Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Genes Dev ; 35(21-22): 1445-1460, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34711653

RESUMEN

Joubert syndrome (JS) is a recessive ciliopathy in which all affected individuals have congenital cerebellar vermis hypoplasia. Here, we report that CEP120, a JS-associated protein involved in centriole biogenesis and cilia assembly, regulates timely neuronal differentiation and the departure of granule neuron progenitors (GNPs) from their germinal zone during cerebellar development. Our results show that depletion of Cep120 perturbs GNP cell cycle progression, resulting in a delay of cell cycle exit in vivo. To dissect the potential mechanism, we investigated the association between CEP120 interactome and the JS database and identified KIAA0753 (a JS-associated protein) as a CEP120-interacting protein. Surprisingly, we found that CEP120 recruits KIAA0753 to centrioles, and that loss of this interaction induces accumulation of GNPs in the germinal zone and impairs neuronal differentiation. Importantly, the replenishment of wild-type CEP120 rescues the above defects, whereas expression of JS-associated CEP120 mutants, which hinder KIAA0753 recruitment, does not. Together, our data reveal a close interplay between CEP120 and KIAA0753 for the germinal zone exit and timely neuronal differentiation of GNPs during cerebellar development, and mutations in CEP120 and KIAA0753 may participate in the heterotopia and cerebellar hypoplasia observed in JS patients.


Asunto(s)
Centriolos , Enfermedades Renales Quísticas , Anomalías Múltiples , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Centriolos/genética , Centriolos/metabolismo , Cerebelo/anomalías , Cerebelo/metabolismo , Anomalías del Ojo , Humanos , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/metabolismo , Proteínas Asociadas a Microtúbulos , Retina/anomalías
2.
Med Sci Monit ; 30: e944157, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38794788

RESUMEN

BACKGROUND Micro-needle knife (MNK) therapy releases the superficial fascia to alleviate pain and improve joint function in patients with acute ankle sprains (AAS). We aimed to evaluate the efficacy and safety of MNK therapy vs that of acupuncture. MATERIAL AND METHODS This blinded assessor, randomized controlled trial allocated 80 patients with AAS to 2 parallel groups in a 1: 1 ratio. The experimental group received MNK therapy; the control group underwent conventional acupuncture treatment at specified acupoints. Clinical efficacy differences between the 2 groups before (time-point 1 [TP1]) and after treatment (TP2) were evaluated using the visual analogue scale (VAS) and Kofoed ankle score. Safety records and evaluations of adverse events were documented. One-month follow-up after treatment (TP3) was conducted to assess the intervention scheme's reliability. RESULTS VAS and Kofoed ankle scores significantly improved in both groups. No patients dropped due to adverse events. At TP1, there were no significant differences between the 2 groups in terms of VAS and Kofoed scores (P>0.05). However, at TP2, efficacy of MNK therapy in releasing the superficial fascia was significantly superior to that of acupuncture treatment (P<0.001). At TP3, no significant differences in scores existed between the groups (P>0.05). CONCLUSIONS This study demonstrates that 6 sessions of MNK therapy to release the superficial fascia safely and effectively alleviated pain and enhanced ankle joint function in patients with AAS, surpassing the efficacy of conventional acupuncture treatment. Future studies should increase the sample size and introduce additional control groups to further validate the superior clinical efficacy of this intervention.


Asunto(s)
Terapia por Acupuntura , Traumatismos del Tobillo , Esguinces y Distensiones , Humanos , Masculino , Femenino , Traumatismos del Tobillo/terapia , Terapia por Acupuntura/métodos , Adulto , Resultado del Tratamiento , Esguinces y Distensiones/terapia , Persona de Mediana Edad , Dimensión del Dolor , Puntos de Acupuntura , Agujas
3.
Appl Opt ; 63(4): 999-1006, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38437397

RESUMEN

In this paper, we investigate the energy efficiency optimization for a parallel relay-assisted underwater wireless optical communication (UWOC) system with simultaneous lightwave information and power transfer (SLIPT) over an aggregate channel. In this system, relay nodes are equipped with energy harvesting devices, getting energy from the direct current component of the received signal transmitted by the source node. These nodes utilize the harvested energy to transmit the signal to the destination node with the decoding and forwarding strategy. The harvested energy for each relay node is derived by the Gauss-Laguerre quadrature formula and the outage probability is deduced by the Meijer-G function. Then, the system's energy efficiency can be calculated and an energy efficiency maximization problem is built up with respect to the bias current. We propose a three-level-iteration algorithm to solve this problem. In the first level, the Dinkelbach method is used to represent energy efficiency in a parametric subtractive form. In the second level, we use the penalty function method to convert the object function and constraint. In the third level, the objective function is transformed into a quadratic function by using a successive convex approximate method, thereby solving for the bias current. The effects of system parameters on energy efficiency are also analyzed. Theoretical results and Monte Carlo simulations suggest that employing the solved bias current can significantly improve the system's energy efficiency.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38632039

RESUMEN

The mutant strain Halomonas bluephagenesis (TDH4A1B5P) was found to produce PHA under low-salt, non-sterile conditions, but the yield was low. To improve the yield, different nitrogen sources were tested. It was discovered that urea was the most effective nitrogen source for promoting growth during the stable stage, while ammonium sulfate was used during the logarithmic stage. The growth time of H. bluephagenesis (TDH4A1B5P) and its PHA content were significantly prolonged by the presence of sulfate ions. After 64 hr in a 5-L bioreactor supplemented with sulfate ions, the dry cell weight (DCW) of H. bluephagenesis weighed 132 g/L and had a PHA content of 82%. To promote the growth and PHA accumulation of H. bluephagenesis (TDH4A1B5P), a feeding regimen supplemented with nitrogen sources and sulfate ions with ammonium sodium sulfate was established in this study. The DCW was 124 g/L, and the PHA content accounted for 82.3% (w/w) of the DCW, resulting in a PHA yield of 101 g/L in a 30-L bioreactor using the optimized culture strategy. In conclusion, stimulating H. bluephagenesis (TDH4A1B5P) to produce PHA is a feasible and suitable strategy for all H. bluephagenesis.


Asunto(s)
Reactores Biológicos , Medios de Cultivo , Halomonas , Nitrógeno , Polihidroxialcanoatos , Sulfatos , Halomonas/metabolismo , Halomonas/crecimiento & desarrollo , Halomonas/genética , Sulfatos/metabolismo , Polihidroxialcanoatos/metabolismo , Medios de Cultivo/química , Nitrógeno/metabolismo , Sulfato de Amonio/metabolismo , Urea/metabolismo , Fermentación
5.
Health Commun ; 39(4): 793-807, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36872881

RESUMEN

This study examines how social media (SM) use is related to human responses to emerging infectious disease risks in the context of the COVID-19 pandemic via an online survey conducted in the United States and Taiwan. Results showed that SM use was related to different types of communicative responses (information seeking, interpersonal discussion, and rumor correction) directly and indirectly through cognitive and affective responses (risk perception, responsibility attribution, and negative and positive emotions). The indirect relationships between SM use and communicative responses through these cognitive and affective responses were moderated by perceived SM network structures. In particular, the mediating influence of negative emotions on communicative responses was associated with perceived SM network homogeneity, while that of positive emotions was related to perceived SM network centrality. Furthermore, responsibility attribution drove Taiwanese SM users' communicative responses, whereas the interrelated influence of positive emotions and perceived SM network centrality shaped American SM users' communicative responses.


Asunto(s)
COVID-19 , Medios de Comunicación Sociales , Humanos , Pandemias , Pueblo Asiatico , COVID-19/epidemiología , Red Social
6.
Bioprocess Biosyst Eng ; 47(7): 1027-1037, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38777954

RESUMEN

With the anoxic-aerobic membrane bioreactor (AO-MBR, CP) as a reference, high-throughput sequencing technology was used to reveal the characteristics of the microbial community structure in the anaerobic side-stream anoxic-aerobic membrane bioreactor sludge reduction process (AOMBR-ASSR, SRP). After the stable operation of two processes for 120 days, the average removal efficiencies of TN and TP in the effluent of SRP were increased by 5.6% and 29.8%, respectively. The observed sludge yields (Yobs) of the two processes were 0.14 and 0.17 gMLSS/(gCOD), respectively, and the sludge reduction rate of the SRP was 19.5%. Compared to the CP, the microbial richness and diversity index of SRP increased significantly. Chloroflexi, which is responsible for the degradation of organic substances under an anaerobic condition, seemed to be reduced in the SRP. Meanwhile, other phyla that involved in the nitrogen cycle, such as Nitrospirae and Planctomycetes, were found to be more abundant in the SRP than in the CP. A total of 21 identified classes were observed, and primarily hydrolyzed fermented bacteria (Sphingobacteriia, Betaproteobacteria, Actinobacteria and Deltaproteobacteria) and slow-growing microorganisms (Bacilli) were accumulated in the SRP. At the genus level, the inserted anaerobic side-stream reactor favored the hydrolyzed bacteria (Saprospiraceae, Rhodobacter and Candidatus_Competibacter), fermented bacteria (Lactococcus and Trichococcus), and slow-growing microorganisms (Dechloromonas and Haliangium), which play a crucial role in the sludge reduction. Furthermore, the enrichment of bacterial species related to nitrogen (Nitrospir and Azospira) provided the potential for nitrogen removal, while the anaerobic environment of the side-stream reactor promoted the enrichment of phosphorus-accumulating organisms.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Reactores Biológicos/microbiología , Aguas del Alcantarillado/microbiología , Anaerobiosis , Membranas Artificiales , Microbiota , Bacterias/metabolismo , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/clasificación , Aerobiosis
7.
Angew Chem Int Ed Engl ; : e202405738, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850230

RESUMEN

The anion exchange membrane water electrolysis is widely regarded as the next-generation technology for producing green hydrogen. The OH- conductivity of the anion exchange membrane plays a key role in the practical implementation of this device. Here, we present a series of Z-S-x membranes with dibenzothiophene groups. These membranes contain sulfur-enhanced hydrogen bond networks that link surrounding surface site hopping regions, forming continuous OH- conducting highways. Z-S-20 has a high through-plane OH- conductivity of 182 ± 28 mS cm-1 and ultralong stability of 2650 h in KOH solution at 80 °C. Based on rational design, we achieved a high PGM-free alkaline water electrolysis performance of 7.12 A cm-2 at 2.0 V in a flow cell and demonstrated durability of 650 h at 2 A cm-2 at 40 °C with a cell voltage increase of 0.65 mV/h.

8.
Angew Chem Int Ed Engl ; 63(19): e202400764, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38501852

RESUMEN

Anion exchange membranes (AEMs) are core components in anion exchange membrane water electrolyzers (AEM-WEs). However, the stability of functional quaternary ammonium cations, especially under high temperatures and harsh alkaline conditions, seriously affects their performance and durability. Herein, we synthesized a 1-methyl-3,3-diphenylquinuclidinium molecular building unit. Density functional theory (DFT) calculations and accelerated aging analysis indicated that the quinine ring structure was exceedingly stable, and the SN2 degradation mechanism dominated. Through acid-catalyzed Friedel-Crafts polymerization, a series of branched poly(aryl-quinuclidinium) (PAQ-x) AEMs with controllable molecular weight and adjustable ion exchange capacity (IEC) were prepared. The stable quinine structure in PAQ-x was verified and retained in the ex situ alkaline stability. Furthermore, the branched polymer structure reduces the swelling rate and water uptake to achieve a tradeoff between dimensional stability and ionic conductivity, significantly improving the membrane's overall performance. Importantly, PAQ-5 was used in non-noble metal-based AEM-WE, achieving a high current density of 8 A cm-2 at 2 V and excellent stability over 2446 h in a gradient constant current test. Based on the excellent alkaline stability of this diaryl-quinuclidinium group, it can be further considered as a multifunctional building unit to create multi-topological polymers for energy conversion devices used in alkaline environments.

9.
Angew Chem Int Ed Engl ; : e202409763, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954763

RESUMEN

Developing non-platinum group metal catalysts for the sluggish hydrogen oxidation reaction (HOR) is critical for alkaline fuel cells. To date, Ni-based materials are the most promising candidates but still suffer from insufficient performance. Herein, we report an unconventional hcp/fcc Ni (u-hcp/fcc Ni) heteronanocrystal with multiple epitaxial hcp/fcc heterointerfaces and coherent twin boundaries, generating rugged surfaces with plenty of asymmetric convex sites. Systematic analyses discover that such convex sites enable the adsorption of *H in unusual bridge positions with weakened binding energy, circumventing the over-strong *H adsorption on traditional hollow positions, and simultaneously stabilizing interfacial *H2O. It thus synergistically optimizes the HOR thermodynamic process as well as reduces the kinetic barrier of the rate-determining Volmer step. Consequently, the developed u-hcp/fcc Ni exhibits the top-rank alkaline HOR activity with a mass activity of 40.6 mA mgNi-1 (6.3 times higher than fcc Ni control) together with superior stability and high CO-tolerance. These results provide a paradigm for designing high-performance catalysts by shifting the adsorption state of intermediates through configuring surface sites.

10.
Plant J ; 109(5): 1116-1133, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34862996

RESUMEN

Plants supply both food and medicinal compounds, which are ascribed to diverse metabolites produced by plants. However, studies on domestication-driven changes in the metabolome and genetic basis of bioactive molecules in perennial fruit trees are generally lacking. Here, we conducted multidimensional analyses revealing a singular domestication event involving the genomic and metabolomic selection of jujube trees (Ziziphus jujuba Mill.). The genomic selection for domesticated genes was highly enriched in metabolic pathways, including carbohydrates and specialized metabolism. Domesticated metabolome profiling indicated that 187 metabolites exhibited significant divergence as a result of directional selection. Malic acid was directly selected during domestication, and the simultaneous selection of specialized metabolites, including triterpenes, consequently lead to edible properties. Cyclopeptide alkaloids (CPAs) were specifically targeted for the divergence between dry and fresh cultivars. We identified 1080 significantly associated loci for 986 metabolites. Among them, 15 triterpenes were directly selected at six major loci, allowing the identification of a homologous cluster containing seven 2,3-oxidosqualene cyclases (OSCs). An OSC gene was found to contribute to the reduction in the content of triterpenes during domestication. The complete pathway for synthesizing ursolic acid was dissected by integration of the metabolome and transcriptome. Additionally, an N-methyltransferase involved in the biosynthesis of CPA and responsible for inter-cultivar content variation was identified. The present study promotes our understanding of the selection process of the global metabolome subsequent to fruit tree domestication and facilitates the genetic manipulation of specialized metabolites to enhance their edible traits.


Asunto(s)
Triterpenos , Ziziphus , Domesticación , Frutas/metabolismo , Metaboloma , Árboles , Triterpenos/metabolismo , Ziziphus/química , Ziziphus/genética , Ziziphus/metabolismo
11.
BMC Genomics ; 24(1): 544, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704940

RESUMEN

BACKGROUND: Domains of unknown function (DUF) proteins are a number of uncharacterized and highly conserved protein families in eukaryotes. In plants, some DUFs have been predicted to play important roles in development and response to abiotic stress. Among them, DUF568-containing protein family is plant-specific and has not been described previously. A basic analysis and expression profiling was performed, and the co-expression and interaction networks were constructed to explore the functions of DUF568 family in rice. RESULTS: The phylogenetic tree showed that the 8, 9 and 11 DUF568 family members from rice, Arabidopsis and maize were divided into three groups. The evolutionary relationship between DUF568 members in rice and maize was close, while the genes in Arabidopsis were more distantly related. The cis-elements prediction showed that over 82% of the elements upstream of OsDUF568 genes were responsive to light and phytohormones. Gene expression profile prediction and RT-qPCR experiments revealed that OsDUF568 genes were highly expressed in leaves, stems and roots of rice seedling. The expression of some OsDUF568 genes varied in response to plant hormones (abscisic acid, 6-benzylaminopurine) and abiotic stress (drought and chilling). Further analysis of the co-expression and protein-protein interaction networks using gene ontology showed that OsDUF568 - related genes were enriched in cellular transports, metabolism and processes. CONCLUSIONS: In summary, our findings suggest that the OsDUF568 family may be a vital gene family for the development of rice roots, leaves and stems. In addition, the OsDUF568 family may participate in abscisic acid and cytokinin signaling pathways, and may be related to abiotic stress resistance in these vegetative tissues of rice.


Asunto(s)
Arabidopsis , Oryza , Oryza/genética , Ácido Abscísico/farmacología , Filogenia , Evolución Biológica
12.
J Am Chem Soc ; 145(25): 13805-13815, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37317527

RESUMEN

The alkaline hydrogen oxidation reaction (HOR) involves the coupling of adsorbed hydrogen (Had) and hydroxyl (OHad) species and is thus orders of magnitude slower than that in acid media. According to the Sabatier principle, developing electrocatalysts with appropriate binding energy for both intermediates is vital to accelerating the HOR though it is still challenging. Herein, we propose an unconventional bilateral compressive strained Ni-Ir interface (Ni-Ir(BCS)) as efficient synergistic HOR sites. Density functional theory (DFT) simulations reveal that the bilateral compressive strain effect leads to the appropriate adsorption for both Had and OHad, enabling their coupling thermodynamically spontaneous and kinetically preferential. Such Ni-Ir(BCS) is experimentally achieved by embedding sub-nanometer Ir clusters in graphene-loaded high-density Ni nanocrystals (Ni-Ir(BCS)/G). As predicted, it exhibits a HOR mass activity of 7.95 and 2.88 times those of commercial Ir/C and Pt/C together with much enhanced CO tolerance, respectively, ranking among the most active state-of-the-art HOR catalysts. These results provide new insights into the rational design of advanced electrocatalysts involving coordinated adsorption and activation of multiple reactants.

13.
Am J Ind Med ; 66(9): 805-812, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37394558

RESUMEN

OBJECTIVES: To determine the extent of contamination of personal protective equipment (PPE) and surfaces by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the nonpatient entry area of a Fangcang shelter hospital, the medical staff accommodation area, and the staff transport bus. METHODS: We collected 816 samples from the nonpatient entry area and floors in a Fangcang shelter hospital, medical staff accommodation area, and scheduled bus, and the five major types of PPE used from April 13 to May 18, 2022. SARS-CoV-2 ribonucleic acid (RNA) was detected by reverse transcription-polymerase chain reaction. RESULTS: Overall, 22.2% of PPE samples were positive for SARS-CoV-2 RNA. Boot covers and gowns were the most contaminated types of PPE. The positive PPE contamination rate of staff collecting respiratory specimens was significantly higher than that of the general-treatment staff group (35.8% vs. 12.2%) and cleaner group (35.8% vs. 26.4%), p < 0.01. In total, 27 of 265 (10.2%) environmental surface samples were positive for SARS-CoV-2 RNA. The contamination-positive rates were 26.8% (22/82), 5.4% (4/74), and 0.9% (1/109) for contaminated, potentially contaminated, and clean zones, respectively. SARS-CoV-2 RNA was frequently detected on objects such as mobile phones, tables, computer keyboards and mice, and door handles. CONCLUSIONS: SARS-CoV-2 RNA was widely distributed on high-touch surfaces and on PPE in the contaminated zone of the Fangcang shelter hospital, implying a potentially high infection risk for healthcare workers. Our findings emphasize the need to ensure adequate environmental cleaning, improve hand hygiene, and reduce the risk of infection. Additionally, prevention of self-contamination during PPE donning and doffing is complex and needs more research.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/prevención & control , ARN Viral , Hospitales Especializados , Unidades Móviles de Salud , Equipo de Protección Personal , Hospitales , Personal de Salud
14.
J Cell Sci ; 133(12)2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32501282

RESUMEN

Primary microcephaly (MCPH) is a neurodevelopmental disorder characterized by small brain size with mental retardation. CPAP (also known as CENPJ), a known microcephaly-associated gene, plays a key role in centriole biogenesis. Here, we generated a previously unreported conditional knockout allele in the mouse Cpap gene. Our results showed that conditional Cpap deletion in the central nervous system preferentially induces formation of monopolar spindles in radial glia progenitors (RGPs) at around embryonic day 14.5 and causes robust apoptosis that severely disrupts embryonic brains. Interestingly, microcephalic brains with reduced apoptosis are detected in conditional Cpap gene-deleted mice that lose only one allele of p53 (also known as Trp53), while simultaneous removal of p53 and Cpap rescues RGP death. Furthermore, Cpap deletion leads to cilia loss, RGP mislocalization, junctional integrity disruption, massive heterotopia and severe cerebellar hypoplasia. Together, these findings indicate that complete CPAP loss leads to severe and complex phenotypes in developing mouse brain, and provide new insights into the causes of MCPH.


Asunto(s)
Microcefalia , Animales , Encéfalo/metabolismo , Centriolos/metabolismo , Cilios/metabolismo , Humanos , Ratones , Microcefalia/genética , Proteínas Asociadas a Microtúbulos/metabolismo
15.
Opt Express ; 30(22): 39492-39509, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36298900

RESUMEN

In this paper, we investigate joint subchannel assignment and power allocation for the energy efficiency (EE) optimization in an indoor visible light communication (VLC)-Internet of Things (IoT) system with simultaneous lightwave information and power transfer (SLIPT). A mixed-integer fractional nonlinear programming problem that is challenging to solve is formulated. To tackle this problem, the optimal transmission scheme is decomposed into subchannel assignment and power allocation. Firstly, a virtual cell formation and subchannel assignment (VCF-SA) scheme is proposed, which considers the location of IoT devices, quality of service requirements, and energy states. Secondly, a quadratic transformation-based power allocation (QTBPA) scheme is designed to transform the fractional nonlinear programming problem into a series of convex problems that can be solved iteratively. Simulation results illustrate the effectiveness of the proposed scheme in terms of system EE compared to the benchmarks. The impact of system parameters on the EE is also analyzed.

16.
J Biomed Sci ; 29(1): 24, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365182

RESUMEN

BACKGROUND: Metastasis is the major cause of morbidity and mortality in cancer that involves in multiple steps including epithelial-mesenchymal transition (EMT) process. Centrosome is an organelle that functions as the major microtubule organizing center (MTOC), and centrosome abnormalities are commonly correlated with tumor aggressiveness. However, the conclusive mechanisms indicating specific centrosomal proteins participated in tumor progression and metastasis remain largely unknown. METHODS: The expression levels of centriolar/centrosomal genes in various types of cancers were first examined by in silico analysis of the data derived from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and European Bioinformatics Institute (EBI) datasets. The expression of STIL (SCL/TAL1-interrupting locus) protein in clinical specimens was further assessed by Immunohistochemistry (IHC) analysis and the oncogenic roles of STIL in tumorigenesis were analyzed using in vitro and in vivo assays, including cell migration, invasion, xenograft tumor formation, and metastasis assays. The transcriptome differences between low- and high-STIL expression cells were analyzed by RNA-seq to uncover candidate genes involved in oncogenic pathways. The quantitative polymerase chain reaction (qPCR) and reporter assays were performed to confirm the results. The chromatin immunoprecipitation (ChIP)-qPCR assay was applied to demonstrate the binding of transcriptional factors to the promoter. RESULTS: The expression of STIL shows the most significant increase in lung and various other types of cancers, and is highly associated with patients' survival rate. Depletion of STIL inhibits tumor growth and metastasis. Interestingly, excess STIL activates the EMT pathway, and subsequently enhances cancer cell migration and invasion. Importantly, we reveal an unexpected role of STIL in tumor metastasis. A subset of STIL translocate into nucleus and associate with FOXM1 (Forkhead box protein M1) to promote tumor metastasis and stemness via FOXM1-mediated downstream target genes. Furthermore, we demonstrate that hypoxia-inducible factor 1α (HIF1α) directly binds to the STIL promoter and upregulates STIL expression under hypoxic condition. CONCLUSIONS: Our findings indicate that STIL promotes tumor metastasis through the HIF1α-STIL-FOXM1 axis, and highlight the importance of STIL as a promising therapeutic target for lung cancer treatment.


Asunto(s)
Transición Epitelial-Mesenquimal , Oncogenes , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Proteína Forkhead Box M1/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética
17.
J Pathol ; 253(1): 106-118, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33009820

RESUMEN

Neuroendocrine prostate cancer (NEPC) is a more aggressive subtype of castration-resistant prostate cancer (CRPC). Although it is well established that PHF8 can enhance prostate cancer cell proliferation, whether PHF8 is involved in prostate cancer initiation and progression is relatively unclear. By comparing the transgenic adenocarcinoma of the mouse prostate (TRAMP) mice with or without Phf8 knockout, we systemically examined the role of PHF8 in prostate cancer development. We found that PHF8 plays a minimum role in initiation and progression of adenocarcinoma. However, PHF8 is essential for NEPC because not only is PHF8 highly expressed in NEPC but also animals without Phf8 failed to develop NEPC. Mechanistically, PHF8 transcriptionally upregulates FOXA2 by demethylating and removing the repressive histone markers on the promoter region of the FOXA2 gene, and the upregulated FOXA2 subsequently regulates the expression of genes involved in NEPC development. Since both PHF8 and FOXA2 are highly expressed in NEPC tissues from patients or patient-derived xenografts, the levels of PHF8 and FOXA2 can either individually or in combination serve as NEPC biomarkers and targeting either PHF8 or FOXA2 could be potential therapeutic strategies for NEPC treatment. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Adenocarcinoma/enzimología , Biomarcadores de Tumor/metabolismo , Carcinoma Neuroendocrino/enzimología , Epigénesis Genética , Factor Nuclear 3-beta del Hepatocito/metabolismo , Histona Demetilasas/metabolismo , Neoplasias de la Próstata/enzimología , Factores de Transcripción/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/secundario , Animales , Biomarcadores de Tumor/genética , Carcinoma Neuroendocrino/genética , Carcinoma Neuroendocrino/secundario , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Factor Nuclear 3-beta del Hepatocito/genética , Histona Demetilasas/genética , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Desnudos , Células PC-3 , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Factores de Transcripción/genética , Transcripción Genética , Regulación hacia Arriba
18.
Mol Breed ; 42(8): 44, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37313517

RESUMEN

Alternative splicing is a general mechanism that regulates gene expression at the post-transcriptional level, which increases the transcriptomic diversity. Oilseed rape (Brassica napus L.), one of the main oil crops worldwide, is prone to secondary dormancy. However, how alternative splicing landscape of oilseed rape seed changes in response to secondary dormancy is unknown. Here, we analyzed twelve RNA-seq libraries from varieties "Huaiyou-SSD-V1" and "Huaiyou-WSD-H2" which exhibited high (> 95%) and low (< 5%) secondary dormancy potential, respectively, and demonstrated that alternative splicing changes led to a significant increase with the diversity of the transcripts in response to secondary dormancy induction via polyethylene glycol 6000 (PEG6000) treatment. Among the four basic alternative splicing types, intron retention dominates, and exon skipping shows the rarest frequency. A total of 8% of expressed genes had two or more transcripts after PEG treatment. Further analysis revealed that global isoform expression percentage variations in alternative splicing in differently expressed genes (DEGs) is more than three times as much as those in non-DEGs, suggesting alternative splicing change is associated with the transcriptional activity change in response to secondary dormancy induction. Eventually, 342 differently spliced genes (DSGs) associated with secondary dormancy were identified, five of which were validated by RT-PCR. The number of the overlapped genes between DSGs and DEGs associated with secondary dormancy was much less than that of either DSGs or DEGs, suggesting that DSGs and DEGs may independently regulates secondary dormancy. Functional annotation analysis of DSGs revealed that spliceosome components are overrepresented among the DSGs, including small nuclear ribonucleoprotein particles (snRNPs), serine/arginine-rich (SR) proteins, and other splicing factors. Thus, it is proposed that the spliceosome components could be exploited to reduce secondary dormancy potential in oilseed rape. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01314-8.

19.
Adv Funct Mater ; 31(24)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34211360

RESUMEN

Nucleotide-based drugs, such as antisense oligonucleotides (ASOs), have unique advantages in treating human diseases as they provide virtually unlimited ability to target any gene. However, their clinical translation faces many challenges, one of which is poor delivery to the target tissue in vivo. This problem is particularly evident in solid tumors. Here, we functionalized liposomes with a tumor-homing and -penetrating peptide, iRGD, as a carrier of an ASO against androgen receptor (AR) for prostate cancer treatment. The iRGD-liposomes exhibited a high loading efficiency of AR-ASO, and an efficient knockdown of AR gene products was achieved in vitro, including AR splice variants. In vivo, iRGD-liposomes significantly increased AR-ASO accumulation in the tumor tissue and decreased AR expression relative to free ASOs in prostate tumors established as subcutaneous xenografts. Similar results were obtained with intra-tibial xenografts modeling metastasis to bones, the predominant site of metastasis for prostate cancer. In treatment studies, iRGD-liposomes markedly improved the AR-ASO efficacy in suppressing the growth of both subcutaneous xenografts and intra-tibial xenografts. The inhibitory effect on tumor growth was also significantly prolonged by the delivery of the AR-ASO in the iRGD-liposomes. Meanwhile, iRGD-liposomes did not increase ASO accumulation or toxicity in healthy organs. Overall, we provide here a delivery system that can significantly increase ASO accumulation and efficacy in solid tumors. These benefits are achieved without significant side effects, providing a way to increase the antitumor efficacy of ASOs.

20.
Acc Chem Res ; 53(6): 1111-1123, 2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32466638

RESUMEN

ConspectusHydrogen is an ideal energy carrier and plays a critical role in the future energy transition. Distinct from steam reforming, electrochemical water splitting, especially powered by renewables, has been considered as a promising technique for scalable production of high-purity hydrogen with no carbon emission. Its commercialization relies on the reduction of electricity consumption and thus hydrogen cost, calling for highly efficient and cost-effective electrocatalysts with the capability of steadily working at high hydrogen output. This requires the electrocatalysts to feature (1) highly active intrinsic sites, (2) abundant accessible active sites, (3) effective electron and mass transfer, (4) high chemical and structural durability, and (5) low-cost and scalable synthesis. It should be noted that all these requirements should be fulfilled together for a practicable electrocatalyst. Much effort has been devoted to addressing one or a few aspects, especially improving the electrocatalytic activity by electronic modulation of active sites, while few reviews have focused on the synergistic modulation of these aspects together although it is essential for advanced electrochemical water splitting.In this Account, we will present recent innovative strategies with an emphasis on our solutions for synergistically modulating intrinsic active sites, electron transportation, mass transfer, and gas evolution, as well as mechanical and chemical durability, of non-precious-metal electrocatalysts, aiming for cost-effective and highly efficient water splitting. The following approaches for coupling these aspects are summarized for both cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER). (1) Synergistic electronic modulations. The electronic structure of a catalytic site determines the adsorption/desorption of reactive intermediates and thus intrinsic activity. It can be tuned by heterogeneous doping, strain effect, spin polarization, etc. Coupling these effects to optimize the reaction pathways or target simultaneously the activity and stability would advance electrocatalytic performance. (2) Synergistic electronic and crystalline modulation. The crystallinity, crystalline phase, crystalline facets, crystalline defects, etc. affect both activity and stability. Coupling these effects with electronic modulation would enhance the activity together with stability. (3) Synergistic electronic and morphological modulation. It will focus on concurrently modulating electronic structure for improving the intrinsic activity and morphology for increasing accessible active sites, especially through single action or processing. The mass transfer and gas evolution properties can also be enhanced by morphological modulation to enable water splitting at large output. (4) Synergistic modulation of elementary reactions. Electrocatalytic reaction generally consists of a couple of elementary reactions. Each one may need a specific active site. Designing and combining various components targeting every elementary step on a space-limited catalyst surface will balance the intermediates and these steps for accelerating the overall reaction. (5) Integrated electrocatalyst design. Taking all these strategies together into account is necessary to integrate all above essential features into one electrocatalyst for enabling high-output water electrolysis. Beyond the progress made to date, the remaining challenges and opportunities is also discussed. With these insights, hopefully, this Account will shed light on the rational design of practical water-splitting electrocatalysts for the cost-effective and scalable production of hydrogen.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA