Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 109(51): 20931-6, 2012 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-23213260

RESUMEN

Tripartite motif 39 (Trim39) is a RING domain-containing E3 ubiquitin ligase able to inhibit the anaphase-promoting complex (APC/C) directly. Through analysis of Trim39 function in p53-positive and p53-negative cells, we have found, surprisingly, that p53-positive cells lacking Trim39 could not traverse the G1/S transition. This effect did not result from disinhibition of the APC/C. Moreover, although Trim39 loss inhibited etoposide-induced apoptosis in p53-negative cells, apoptosis was enhanced by Trim39 knockdown in p53-positive cells. Furthermore, we show here that the Trim39 can directly bind and ubiquitylate p53 in vitro and in vivo, leading to p53 degradation. Depletion of Trim39 significantly increased p53 protein levels and cell growth retardation in multiple cell lines. We found that the relative importance of Trim39 and the well-characterized p53-directed E3 ligase, murine double minute 2 (MDM2), varied between cell types. In cells that were relatively insensitive to the MDM2 inhibitor, nutlin-3a, apoptosis could be markedly enhanced by siRNA directed against Trim39. As such, Trim39 may serve as a potential therapeutic target in tumors with WT p53 when MDM2 inhibition is insufficient to elevate p53 levels and apoptosis.


Asunto(s)
Proteínas Portadoras/química , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina/química , Ubiquitinación , Secuencias de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Apoptosis , Ciclo Celular , Proliferación Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Replicación del ADN , Citometría de Flujo/métodos , Fase G1 , Humanos , Unión Proteica , ARN Interferente Pequeño/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas
2.
EMBO J ; 29(18): 3196-207, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20700104

RESUMEN

Apoptosis ensures tissue homeostasis in response to developmental cues or cellular damage. Recently reported genome-wide RNAi screens have suggested that several metabolic regulators can modulate caspase activation in Drosophila. Here, we establish a previously unrecognized link between metabolism and Drosophila apoptosis by showing that cellular NADPH levels modulate the initiator caspase Dronc through its phosphorylation at S130. Depletion of NADPH removed this inhibitory phosphorylation, resulting in the activation of Dronc and subsequent cell death. Conversely, upregulation of NADPH prevented Dronc-mediated apoptosis upon DIAP1 RNAi or cycloheximide treatment. Furthermore, this CaMKII-mediated phosphorylation of Dronc hindered Dronc activation, but not its catalytic activity. Blockade of NADPH production aggravated the death-inducing activity of Dronc in specific neurons, but not in the photoreceptor cells of the eyes of transgenic flies; similarly, non-phosphorylatable Dronc was more potent than wild type in triggering specific neuronal apoptosis. Our observations reveal a novel regulatory circuitry in Drosophila apoptosis, and, as NADPH levels are elevated in cancer cells, also provide a genetic model to understand aberrations in cancer cell apoptosis resulting from metabolic alterations.


Asunto(s)
Apoptosis , Caspasas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Inhibidoras de la Apoptosis/metabolismo , Neuronas/metabolismo , Animales , Animales Modificados Genéticamente , Western Blotting , Supervivencia Celular , Células Cultivadas , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Activación Enzimática , Inmunoprecipitación , Malatos/metabolismo , NADP/metabolismo , Neuronas/citología , ARN Interferente Pequeño/farmacología
3.
Duke Law J ; 62(5): 1069-108, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25330553

RESUMEN

The pharmaceutical industry relies on innovation. However, many innovative firms are cutting their research and development investments and seeing their new product pipelines dry up, due in part to a lack of sufficient patent protection. This Note identifies two major factors that have caused this inadequacy in patent protection. First, pharmaceutical patents are challenged early and often by generic manufacturers, as encouraged by the 1984 Hatch-Waxman Act. Second, the scope of pharmaceutical-patents is sometimes unduly restrained due to limited application of the doctrine of equivalents. Consequently, pharmaceutical patents, especially drug-product patents, are easily designed around and cannot offer the protection necessary for innovative firms to recoup their developmental costs. This Note argues for a wider application of means-plus-function clauses in pharmaceutical patents as a potential cure for this problem. Means-plus-function claims, although authorized by Congress in the 1952 Patent Act, have not been explored much in the pharmaceutical context. This Note argues that this claiming strategy is not only appropriate but also particularly effective for pharmaceutical patents. Means-plus-function claims would give drug-product patents adequate scope even with the limited use of the doctrine of equivalents and thus would provide the protection necessary for innovative firms to withstand frequent attacks by generic manufacturers. Finally, this Note examines issues anticipated with applying means-plus-function claims to pharmaceutical patents and proposes possible solutions.


Asunto(s)
Aprobación de Drogas/legislación & jurisprudencia , Competencia Económica/legislación & jurisprudencia , Patentes como Asunto/legislación & jurisprudencia , Investigación/legislación & jurisprudencia , Industria Farmacéutica/legislación & jurisprudencia , Medicamentos Genéricos/economía , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Legislación de Medicamentos/economía , Legislación de Medicamentos/historia , Investigación/economía , Estados Unidos , United States Food and Drug Administration
4.
Blood ; 116(1): 140-50, 2010 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-20351309

RESUMEN

Arteriovenous-lymphatic endothelial cell fates are specified by the master regulators, namely, Notch, COUP-TFII, and Prox1. Whereas Notch is expressed in the arteries and COUP-TFII in the veins, the lymphatics express all 3 cell fate regulators. Previous studies show that lymphatic endothelial cell (LEC) fate is highly plastic and reversible, raising a new concept that all 3 endothelial cell fates may co-reside in LECs and a subtle alteration can result in a reprogramming of LEC fate. We provide a molecular basis verifying this concept by identifying a cross-control mechanism among these cell fate regulators. We found that Notch signal down-regulates Prox1 and COUP-TFII through Hey1 and Hey2 and that activated Notch receptor suppresses the lymphatic phenotypes and induces the arterial cell fate. On the contrary, Prox1 and COUP-TFII attenuate vascular endothelial growth factor signaling, known to induce Notch, by repressing vascular endothelial growth factor receptor-2 and neuropilin-1. We show that previously reported podoplanin-based LEC heterogeneity is associated with differential expression of Notch1 in human cutaneous lymphatics. We propose that the expression of the 3 cell fate regulators is controlled by an exquisite feedback mechanism working in LECs and that LEC fate is a consequence of the Prox1-directed lymphatic equilibrium among the cell fate regulators.


Asunto(s)
Factor de Transcripción COUP II/metabolismo , Células Endoteliales/metabolismo , Proteínas de Homeodominio/metabolismo , Receptor Notch1/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Western Blotting , Factor de Transcripción COUP II/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Células Cultivadas , Regulación hacia Abajo , Células Endoteliales/citología , Retroalimentación Fisiológica , Perfilación de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Unión Proteica , Interferencia de ARN , Receptor Notch1/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Serrate-Jagged , Transducción de Señal , Proteínas Supresoras de Tumor/genética
5.
Curr Biol ; 18(13): 933-42, 2008 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-18571408

RESUMEN

BACKGROUND: In response to DNA damage, cells undergo either cell-cycle arrest or apoptosis, depending on the extent of damage and the cell's capacity for DNA repair. Cell-cycle arrest induced by double-stranded DNA breaks depends on activation of the ataxia-telangiectasia (ATM) protein kinase, which phosphorylates cell-cycle effectors such as Chk2 and p53 to inhibit cell-cycle progression. ATM is recruited to double-stranded DNA breaks by a complex of sensor proteins, including Mre11/Rad50/Nbs1, resulting in autophosphorylation, monomerization, and activation of ATM kinase. RESULTS: In characterizing Aven protein, a previously reported apoptotic inhibitor, we have found that Aven can function as an ATM activator to inhibit G2/M progression. Aven bound to ATM and Aven overexpressed in cycling Xenopus egg extracts prevented mitotic entry and induced phosphorylation of ATM and its substrates. Immunodepletion of endogenous Aven allowed mitotic entry even in the presence of damaged DNA, and RNAi-mediated knockdown of Aven in human cells prevented autophosphorylation of ATM at an activating site (S1981) in response to DNA damage. Interestingly, Aven is also a substrate of the ATM kinase. Mutation of ATM-mediated phosphorylation sites on Aven reduced its ability to activate ATM, suggesting that Aven activation of ATM after DNA damage is enhanced by ATM-mediated Aven phosphorylation. CONCLUSIONS: These results identify Aven as a new ATM activator and describe a positive feedback loop operating between Aven and ATM. In aggregate, these findings place Aven, a known apoptotic inhibitor, as a critical transducer of the DNA-damage signal.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada , Proteína Quinasa CDC2/metabolismo , Ciclina B/metabolismo , Activación Enzimática , Retroalimentación Fisiológica , Células HeLa , Humanos , Fosforilación , Interferencia de ARN , Xenopus
6.
Curr Biol ; 17(3): 213-24, 2007 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-17276914

RESUMEN

BACKGROUND: Vertebrate oocytes are arrested in metaphase II of meiosis prior to fertilization by cytostatic factor (CSF). CSF enforces a cell-cycle arrest by inhibiting the anaphase-promoting complex (APC), an E3 ubiquitin ligase that targets Cyclin B for degradation. Although Cyclin B synthesis is ongoing during CSF arrest, constant Cyclin B levels are maintained. To achieve this, oocytes allow continuous slow Cyclin B degradation, without eliminating the bulk of Cyclin B, which would induce release from CSF arrest. However, the mechanism that controls this continuous degradation is not understood. RESULTS: We report here the molecular details of a negative feedback loop wherein Cyclin B promotes its own destruction through Cdc2/Cyclin B-mediated phosphorylation and inhibition of the APC inhibitor Emi2. Emi2 bound to the core APC, and this binding was disrupted by Cdc2/Cyclin B, without affecting Emi2 protein stability. Cdc2-mediated phosphorylation of Emi2 was antagonized by PP2A, which could bind to Emi2 and promote Emi2-APC interactions. CONCLUSIONS: Constant Cyclin B levels are maintained during a CSF arrest through the regulation of Emi2 activity. A balance between Cdc2 and PP2A controls Emi2 phosphorylation, which in turn controls the ability of Emi2 to bind to and inhibit the APC. This balance allows proper maintenance of Cyclin B levels and Cdc2 kinase activity during CSF arrest.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proteínas F-Box/metabolismo , Oocitos/citología , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas c-mos/metabolismo , Proteínas de Xenopus/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Animales , Proteínas Cdc20 , Proteínas de Ciclo Celular/metabolismo , Ciclina B/metabolismo , ADN Complementario , Inhibidores Enzimáticos/farmacología , Biblioteca de Genes , Humanos , Meiosis , Ácido Ocadaico/farmacología , Oocitos/metabolismo , Fosforilación , Unión Proteica/efectos de los fármacos , Proteínas Recombinantes de Fusión/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Xenopus
7.
J Cell Biol ; 197(3): 361-7, 2012 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-22529100

RESUMEN

Proapoptotic Bcl-2 family members, such as Bax, promote release of cytochrome c from mitochondria, leading to caspase activation and cell death. It was previously reported that modulator of apoptosis protein 1 (MOAP-1), an enhancer of Bax activation induced by DNA damage, is stabilized by Trim39, a protein of unknown function. In this paper, we show that MOAP-1 is a novel substrate of the anaphase-promoting complex (APC/C(Cdh1)) ubiquitin ligase. The influence of Trim39 on MOAP-1 levels stems from the ability of Trim39 (a RING domain E3 ligase) to directly inhibit APC/C(Cdh1)-mediated protein ubiquitylation. Accordingly, small interfering ribonucleic acid-mediated knockdown of Cdh1 stabilized MOAP-1, thereby enhancing etoposide-induced Bax activation and apoptosis. These data identify Trim39 as a novel APC/C regulator and provide an unexpected link between the APC/C and apoptotic regulation via MOAP-1.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Cadherinas/metabolismo , Proteínas Portadoras/metabolismo , Ubiquitina/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteína de la Poliposis Adenomatosa del Colon/genética , Antígenos CD , Apoptosis , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/genética , Western Blotting , Cadherinas/antagonistas & inhibidores , Cadherinas/genética , Proteínas Portadoras/genética , Daño del ADN , Citometría de Flujo , Fase G1/fisiología , Células HeLa , Humanos , Inmunoprecipitación , ARN Interferente Pequeño/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ubiquitina-Proteína Ligasas , Ubiquitinación
8.
Mol Biol Cell ; 22(8): 1207-16, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21325626

RESUMEN

Homeostatic maintenance of cellular mitochondria requires a dynamic balance between fission and fusion, and controlled changes in morphology are important for processes such as apoptosis and cellular division. Interphase mitochondria have been described as an interconnected network that fragments as cells enter mitosis, and this mitotic mitochondrial fragmentation is known to be regulated by the dynamin-related GTPase Drp1 (dynamin-related protein 1), a key component of the mitochondrial division machinery. Loss of Drp1 function and the subsequent failure of mitochondrial division during mitosis lead to incomplete cytokinesis and the unequal distribution of mitochondria into daughter cells. During mitotic exit and interphase, the mitochondrial network reforms. Here we demonstrate that changes in mitochondrial dynamics as cells exit mitosis are driven in part through ubiquitylation of Drp1, catalyzed by the APC/C(Cdh1) (anaphase-promoting complex/cyclosome and its coactivator Cdh1) E3 ubiquitin ligase complex. Importantly, inhibition of Cdh1-mediated Drp1 ubiquitylation and proteasomal degradation during interphase prevents the normal G1 phase regrowth of mitochondrial networks following cell division.


Asunto(s)
Cadherinas/metabolismo , Citocinesis , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Mitosis , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Antígenos CD , Cadherinas/antagonistas & inhibidores , Cadherinas/genética , Dinaminas , Estabilidad de Enzimas , Fase G1/genética , GTP Fosfohidrolasas/deficiencia , GTP Fosfohidrolasas/genética , Expresión Génica , Silenciador del Gen , Células HEK293 , Células HeLa , Humanos , Interfase/genética , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/genética , Mitocondrias/genética , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN Interferente Pequeño/metabolismo , Transfección , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Complejos de Ubiquitina-Proteína Ligasa/genética , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
9.
Mol Biol Cell ; 21(15): 2589-97, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20534816

RESUMEN

Vertebrate eggs are arrested at Metaphase II by Emi2, the meiotic anaphase-promoting complex/cyclosome (APC/C) inhibitor. Although the importance of Emi2 during oocyte maturation has been widely recognized and its regulation extensively studied, its mechanism of action remained elusive. Many APC/C inhibitors have been reported to act as pseudosubstrates, inhibiting the APC/C by preventing substrate binding. Here we show that a previously identified zinc-binding region is critical for the function of Emi2, whereas the D-box is largely dispensable. We further demonstrate that instead of acting through a "pseudosubstrate" mechanism as previously hypothesized, Emi2 can inhibit Cdc20-dependent activation of the APC/C substoichiometrically, blocking ubiquitin transfer from the ubiquitin-charged E2 to the substrate. These findings provide a novel mechanism of APC/C inhibition wherein the final step of ubiquitin transfer is targeted and raise the interesting possibility that APC/C is inhibited by Emi2 in a catalytic manner.


Asunto(s)
Proteínas F-Box/química , Proteínas F-Box/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina/metabolismo , Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo , Xenopus/metabolismo , Secuencias de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Animales , Biocatálisis , Activación Enzimática , Humanos , Unión Proteica , Relación Estructura-Actividad , Especificidad por Sustrato , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores
10.
Biosens Bioelectron ; 25(9): 2161-6, 2010 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-20303735

RESUMEN

Oligonucleotide probes on the sensor surface can be hybridized with single-strand DNA (ssDNA) that is formed from PCR products in ice bath after degeneration. Thus, detection of PCR products by piezoelectric sensors requires the participation of ssDNA PCR products in ice bath. When PCR products in ice bath are added into the buffer of the sensor well at room temperature, there will be a temperature change process during mixing. However, it still remains unclear whether the temperature change affects the frequency baseline stability of the sensor and the result judgment, which is the basic condition for detecting hybridization of nucleic acid. In this study, we detected the hybridization of HPV PCR products during temperature change process by a self-designed adjustable metal-clamping piezoelectric sensor. The study mainly involves sensor adjustment, probe immobilization and ice bath sample addition (at different concentrations and different volumes). The response curve of basic frequency in temperature change process showed three stages, i.e., increase, decrease to baseline, and continuous decrease to stability. The early increase of frequency and duration of the time can reach 55+/-7.4 Hz and 39 min when 40 microL sample (0-1 degrees C) was added into 110 microL buffer (25 degrees C). The frequency increase effect caused by temperature difference at early stage depends on the volume ratio of two liquids and on the temperature difference. The results indicate that we should pay more attention to possibly small volume of PCR products in ice bath and minor temperature difference of two liquids in operation.


Asunto(s)
Técnicas Biosensibles/instrumentación , ADN de Cadena Simple/análisis , ADN de Cadena Simple/genética , Secuencia de Bases , Cartilla de ADN/genética , ADN de Cadena Simple/química , Técnicas Electroquímicas , Metales , Hibridación de Ácido Nucleico , Reacción en Cadena de la Polimerasa
11.
Nat Cell Biol ; 11(5): 644-51, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19396163

RESUMEN

Loss of cell division cycle 2 (Cdc2, also known as Cdk1) activity after cyclin B degradation is necessary, but not sufficient, for mitotic exit. Proteins phosphorylated by Cdc2 and downstream mitotic kinases must be dephosphorylated. We report here that protein phosphatase-1 (PP1) is the main catalyst of mitotic phosphoprotein dephosphorylation. Suppression of PP1 during early mitosis is maintained through dual inhibition by Cdc2 phosphorylation and the binding of inhibitor-1. Protein kinase A (PKA) phosphorylates inhibitor-1, mediating binding to PP1. As Cdc2 levels drop after cyclin B degradation, auto-dephosphorylation of PP1 at its Cdc2 phosphorylation site (Thr 320) allows partial PP1 activation. This promotes PP1-regulated dephosphorylation at the activating site of inhibitor-1 (Thr 35) followed by dissociation of the inhibitor-1-PP1 complex and then full PP1 activation to promote mitotic exit. Thus, Cdc2 both phosphorylates multiple mitotic substrates and inhibits their PP1-mediated dephosphorylation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Mitosis/fisiología , Fosfoproteínas/metabolismo , Proteína Fosfatasa 1/metabolismo , Proteínas/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica/farmacología , Animales , Proteína Quinasa CDC2 , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ciclina B/metabolismo , Ciclina B/farmacología , Quinasas Ciclina-Dependientes , Células HeLa , Humanos , Modelos Biológicos , Ácido Ocadaico/farmacología , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Fosforilación , Unión Proteica/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Proteína Fosfatasa 1/antagonistas & inhibidores , Proteína Fosfatasa 1/farmacología , Proteínas/farmacología , Purinas/farmacología , Roscovitina , Treonina/metabolismo , Proteínas de Xenopus/antagonistas & inhibidores , Proteínas de Xenopus/metabolismo , Xenopus laevis
12.
Dev Cell ; 16(6): 856-66, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19531356

RESUMEN

Xenopus oocyte death is partly controlled by the apoptotic initiator caspase-2 (C2). We reported previously that oocyte nutrient depletion activates C2 upstream of mitochondrial cytochrome c release. Conversely, nutrient-replete oocytes inhibit C2 via S135 phosphorylation catalyzed by calcium/calmodulin-dependent protein kinase II. We now show that C2 phosphorylated at S135 binds 14-3-3zeta, thus preventing C2 dephosphorylation. Moreover, we determined that S135 dephosphorylation is catalyzed by protein phosphatase-1 (PP1), which directly binds C2. Although C2 dephosphorylation is responsive to metabolism, neither PP1 activity nor binding is metabolically regulated. Rather, release of 14-3-3zeta from C2 is controlled by metabolism and allows for C2 dephosphorylation. Accordingly, a C2 mutant unable to bind 14-3-3zeta is highly susceptible to dephosphorylation. Although this mechanism was initially established in Xenopus, we now demonstrate similar control of murine C2 by phosphorylation and 14-3-3 binding in mouse eggs. These findings provide an unexpected evolutionary link between 14-3-3 and metabolism in oocyte death.


Asunto(s)
Proteínas 14-3-3/metabolismo , Apoptosis , Caspasa 2/metabolismo , Oocitos/citología , Oocitos/enzimología , Proteína Fosfatasa 1/metabolismo , Animales , Activación Enzimática , Femenino , Ratones , Fosforilación , Unión Proteica , Xenopus
13.
Mol Biol Cell ; 19(8): 3536-43, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18550795

RESUMEN

The transition of oocytes from meiosis I (MI) to meiosis II (MII) requires partial cyclin B degradation to allow MI exit without S phase entry. Rapid reaccumulation of cyclin B allows direct progression into MII, producing a cytostatic factor (CSF)-arrested egg. It has been reported that dampened translation of the anaphase-promoting complex (APC) inhibitor Emi2 at MI allows partial APC activation and MI exit. We have detected active Emi2 translation at MI and show that Emi2 levels in MI are mainly controlled by regulated degradation. Emi2 degradation in MI depends not on Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), but on Cdc2-mediated phosphorylation of multiple sites within Emi2. As in MII, this phosphorylation is antagonized by Mos-mediated recruitment of PP2A to Emi2. Higher Cdc2 kinase activity in MI than MII allows sufficient Emi2 phosphorylation to destabilize Emi2 in MI. At MI anaphase, APC-mediated degradation of cyclin B decreases Cdc2 activity, enabling Cdc2-mediated Emi2 phosphorylation to be successfully antagonized by Mos-mediated PP2A recruitment. These data suggest a model of APC autoinhibition mediated by stabilization of Emi2; Emi2 proteins accumulate at MI exit and inhibit APC activity sufficiently to prevent complete degradation of cyclin B, allowing MI exit while preventing interphase before MII entry.


Asunto(s)
Ciclina B/fisiología , Proteínas F-Box/fisiología , Regulación de la Expresión Génica , Meiosis , Proteínas Proto-Oncogénicas c-mos/fisiología , Animales , Proteína Quinasa CDC2 , Movimiento Celular , Ciclina B/metabolismo , Quinasas Ciclina-Dependientes , Endocitosis , Células HL-60 , Humanos , Leucocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Neutrófilos/metabolismo , Proteínas Proto-Oncogénicas c-mos/metabolismo
14.
J Proteome Res ; 6(12): 4624-33, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17988085

RESUMEN

Previous investigations of plant responses to higher CO 2 levels were mostly based on physiological measurements and biochemical assays. In this study, a proteomic approach was employed to investigate plant response to higher CO 2 levels using rice as a model. Ten-day-old seedlings were progressively exposed to 760 ppm, 1140 ppm, and 1520 ppm CO 2 concentrations for 24 h each. The net photosynthesis rate ( P n), stomatal conductance ( G s), transpiration rate ( E), and intercellular to ambient CO 2 concentration ratio ( C i/ C a) were measured. P n, G s, and E showed a maximum increase at 1140 ppm CO 2, but further exposure to 1520 ppm for 24 h resulted in down regulation of these. Proteins extracted from leaves were subjected to 2-DE analysis, and 57 spots showing differential expression patterns, as detected by profile analysis, were identified by MALDI-TOF/TOF-MS. Most of the proteins belonged to photosynthesis, carbon metabolism, and energy pathways. Several molecular chaperones and ascorbate peroxidase were also found to respond to higher CO 2 levels. Concomitant with the down regulation of P n and G s, the levels of enzymes of the regeneration phase of the Calvin cycle were decreased. Correlations between the protein profiles and the photosynthetic measurements at the three CO 2 levels were explored.


Asunto(s)
Dióxido de Carbono/fisiología , Oryza/metabolismo , Hojas de la Planta/metabolismo , Proteoma/fisiología , Plantones/metabolismo , Dióxido de Carbono/metabolismo , Electroforesis en Gel Bidimensional , Oryza/crecimiento & desarrollo , Fotosíntesis/fisiología , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/química , Proteínas de Plantas/fisiología , Plantones/crecimiento & desarrollo
15.
Proc Natl Acad Sci U S A ; 104(42): 16564-9, 2007 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-17881560

RESUMEN

Before fertilization, vertebrate eggs are arrested in meiosis II by cytostatic factor (CSF), which holds the anaphase-promoting complex (APC) in an inactive state. It was recently reported that Mos, an integral component of CSF, acts in part by promoting the Rsk-mediated phosphorylation of the APC inhibitor Emi2/Erp1. We report here that Rsk phosphorylation of Emi2 promotes its interaction with the protein phosphatase PP2A. Emi2 residues adjacent to the Rsk phosphorylation site were important for PP2A binding. An Emi2 mutant that retained Rsk phosphorylation but lacked PP2A binding could not be modulated by Mos. PP2A bound to Emi2 acted on two distinct clusters of sites phosphorylated by Cdc2, one responsible for modulating its stability during CSF arrest and one that controls binding to the APC. These findings provide a molecular mechanism for Mos action in promoting CSF arrest and also define an unusual mechanism, whereby protein phosphorylation recruits a phosphatase for dephosphorylation of distinct sites phosphorylated by another kinase.


Asunto(s)
Proteínas F-Box/metabolismo , Meiosis , Óvulo/fisiología , Fosforilasa Fosfatasa/metabolismo , Proteínas Proto-Oncogénicas c-mos/metabolismo , Proteínas de Xenopus/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas F-Box/genética , Humanos , Datos de Secuencia Molecular , Fosforilación , Proteínas Proto-Oncogénicas c-mos/genética , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal , Xenopus , Proteínas de Xenopus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA