Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(26): E5990-E5999, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29891662

RESUMEN

Colorectal cancer patients often relapse after chemotherapy, owing to the survival of stem or progenitor cells referred to as cancer stem cells (CSCs). Although tumor stromal factors are known to contribute to chemoresistance, it remains not fully understood how CSCs in the hypoxic tumor microenvironment escape the chemotherapy. Here, we report that hypoxia-inducible factor (HIF-1α) and cancer-associated fibroblasts (CAFs)-secreted TGF-ß2 converge to activate the expression of hedgehog transcription factor GLI2 in CSCs, resulting in increased stemness/dedifferentiation and intrinsic resistance to chemotherapy. Genetic or small-molecule inhibitor-based ablation of HIF-1α/TGF-ß2-mediated GLI2 signaling effectively reversed the chemoresistance caused by the tumor microenvironment. Importantly, high expression levels of HIF-1α/TGF-ß2/GLI2 correlated robustly with the patient relapse following chemotherapy, highlighting a potential biomarker and therapeutic target for chemoresistance in colorectal cancer. Our study thus uncovers a molecular mechanism by which hypoxic colorectal tumor microenvironment promotes cancer cell stemness and resistance to chemotherapy and suggests a potentially targeted treatment approach to mitigating chemoresistance.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/biosíntesis , Proteínas de Neoplasias/biosíntesis , Proteínas Nucleares/biosíntesis , Factor de Crecimiento Transformador beta2/biosíntesis , Microambiente Tumoral , Proteína Gli2 con Dedos de Zinc/biosíntesis , Hipoxia de la Célula , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Masculino , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Factor de Crecimiento Transformador beta2/genética , Proteína Gli2 con Dedos de Zinc/genética
2.
Mol Cancer ; 16(1): 104, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28615056

RESUMEN

BACKGROUND: Oct4, a key stemness transcription factor, is overexpressed in lung cancer. Here, we reveal a novel transcription regulation of long non-coding RNAs (lncRNAs) by Oct4. LncRNAs have emerged as important players in cancer progression. METHODS: Oct4 chromatin-immunoprecipitation (ChIP)-sequencing and several lncRNA databases with literature annotation were integrated to identify Oct4-regulated lncRNAs. Luciferase activity, qRT-PCR and ChIP-PCR assays were conducted to examine transcription regulation of lncRNAs by Oct4. Reconstitution experiments of Oct4 and downstream lncRNAs in cell proliferation, migration and invasion assays were performed to confirm the Oct4-lncRNAs signaling axes in promoting lung cancer cell growth and motility. The expression correlations between Oct4 and lncRNAs were investigated in 124 lung cancer patients using qRT-PCR analysis. The clinical significance of Oct4/lncRNAs signaling axes were further evaluated using multivariate Cox regression and Kaplan-Meier analyses. RESULTS: We confirmed that seven lncRNAs were upregulated by direct binding of Oct4. Among them, nuclear paraspeckle assembly transcript 1 (NEAT1), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and urothelial carcinoma-associated 1 (UCA1) were validated as Oct4 transcriptional targets through promoter or enhancer activation. We showed that lung cancer cells overexpressing NEAT1 or MALAT1 and the Oct4-silenced cells reconstituted with NEAT1 or MALAT1 promoted cell proliferation, migration and invasion. In addition, knockdown of NEAT1 or MALAT1 abolished Oct4-mediated lung cancer cell growth and motility. These cell-based results suggested that Oct4/NEAT1 or Oct4/MALAT1 axis promoted oncogenesis. Clinically, Oct4/NEAT1/MALAT1 co-overexpression was an independent factor for prediction of poor outcome in 124 lung cancer patients. CONCLUSIONS: Our study reveals a novel mechanism by which Oct4 transcriptionally activates NEAT1 via promoter and MALAT1 via enhancer binding to promote cell proliferation and motility, and led to lung tumorigenesis and poor prognosis.


Asunto(s)
Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Factor 3 de Transcripción de Unión a Octámeros/genética , ARN Largo no Codificante/genética , Anciano , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Inmunoprecipitación de Cromatina , Elementos de Facilitación Genéticos , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/mortalidad , Masculino , Persona de Mediana Edad , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Pronóstico , Regiones Promotoras Genéticas , ARN Largo no Codificante/metabolismo , Transcripción Genética
3.
Int J Cancer ; 140(10): 2375-2386, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28233309

RESUMEN

Development of new inhibitors targeting histone deacetylases (HDACs) with improved efficacy for solid tumor therapy is urgently needed. Here, we report the development of a novel HDAC inhibitor TMU-35435 and verify it as a single agent and in combination treatment with DNA demethylation reagent 5-aza-2'-deoxycytidine (5-aza-dC) in lung cancer preclinical models. TMU-35435 exerted cancer-specific cytotoxicity via mitochondria-mediated apoptosis. Expression microarrays revealed a unique TMU-35435-induced gene networks enriched in biological processes, including "negative regulation of cell proliferation" and "Wnt receptor signaling pathway" compared to FDA-approved HDAC inhibitor SAHA. TMU-35435 inhibited tumor growth with good pharmacokinetic properties and safety features in lung orthotopic and subcutaneously implanted xenograft models. TMU-35435 and 5-aza-dC showed synergistic antitumor effects through reactivation of tumor suppressor genes and those genes encoding negative regulators of Wnt signaling pathway in vitro and in vivo. Some genes showed additive inhibition of DNA methylation upon TMU-35435 and 5-aza-dC combined treatment. Our findings suggested that TMU-35435 is a potential HDAC inhibitor for lung cancer treatment as a single agent and in combination with 5-aza-dC.


Asunto(s)
Amidas/química , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Metilación de ADN/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Vía de Señalización Wnt/efectos de los fármacos , Acetilación , Animales , Apoptosis/efectos de los fármacos , Azacitidina/análogos & derivados , Azacitidina/farmacología , Western Blotting , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Decitabina , Sinergismo Farmacológico , Quimioterapia Combinada , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Histonas/metabolismo , Humanos , Técnicas para Inmunoenzimas , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Nucleic Acids Res ; 43(3): 1593-608, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25609695

RESUMEN

Overexpression of Oct4, a stemness gene encoding a transcription factor, has been reported in several cancers. However, the mechanism by which Oct4 directs transcriptional program that leads to somatic cancer progression remains unclear. In this study, we provide mechanistic insight into Oct4-driven transcriptional network promoting drug-resistance and metastasis in lung cancer cell, animal and clinical studies. Through an integrative approach combining our Oct4 chromatin-immunoprecipitation sequencing and ENCODE datasets, we identified the genome-wide binding regions of Oct4 in lung cancer at promoter and enhancer of numerous genes involved in critical pathways which promote tumorigenesis. Notably, PTEN and TNC were previously undefined targets of Oct4. In addition, novel Oct4-binding motifs were found to overlap with DNA elements for Sp1 transcription factor. We provided evidence that Oct4 suppressed PTEN in an Sp1-dependent manner by recruitment of HDAC1/2, leading to activation of AKT signaling and drug-resistance. In contrast, Oct4 transactivated TNC independent of Sp1 and resulted in cancer metastasis. Clinically, lung cancer patients with Oct4 high, PTEN low and TNC high expression profile significantly correlated with poor disease-free survival. Our study reveals a critical Oct4-driven transcriptional program that promotes lung cancer progression, illustrating the therapeutic potential of targeting Oc4 transcriptionally regulated genes.


Asunto(s)
Resistencia a Antineoplásicos/genética , Neoplasias Pulmonares/genética , Metástasis de la Neoplasia/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Fosfohidrolasa PTEN/genética , Tenascina/genética , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Reacción en Cadena de la Polimerasa , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Transcripción Genética
6.
Hum Reprod Open ; 2024(2): hoae012, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38515829

RESUMEN

STUDY QUESTION: Do embryos with longer telomere length (TL) at the blastocyst stage have a higher capacity to survive after frozen-thawed embryo transfer (FET)? SUMMARY ANSWER: Digitally estimated TL using low-pass whole genome sequencing (WGS) data from the preimplantation genetic testing for aneuploidy (PGT-A) process demonstrates that blastocyst TL is the most essential factor associated with likelihood of implantation. WHAT IS KNOWN ALREADY: The lifetime TL is established in the early cleavage cycles following fertilization through a recombination-based lengthening mechanism and starts erosion beyond the blastocyst stage. In addition, a telomerase-mediated slow erosion of TL in human fetuses has been observed from a gestational age of 6-11 weeks. Finally, an abnormal shortening of telomeres is likely involved in embryo loss during early development. STUDY DESIGN SIZE DURATION: Blastocyst samples were obtained from patients who underwent PGT-A and FET in an IVF center from March 2015 to May 2018. Digitally estimated mitochondrial copy number (mtCN) and TL were used to study associations with the implantation potential of each embryo. PARTICIPANTS/MATERIALS SETTING AND METHODS: In total, 965 blastocysts from 232 cycles (164 patients) were available to investigate the biological and clinical relevance of TL. A WGS-based workflow was applied to determine the ploidy of each embryo. Data from low-pass WGS-PGT-A were used to estimate the mtCN and TL for each embryo. Single-variant and multi-variant logistic regression, decision tree, and random forest models were applied to study various factors in association with the implantation potential of each embryo. MAIN RESULTS AND THE ROLE OF CHANCE: Of the 965 blastocysts originally available, only 216 underwent FET. While mtCN from the transferred embryos is significantly associated with the ploidy call of each embryo, mtCN has no role in impacting IVF outcomes after an embryo transfer in these women. The results indicate that mtCN is a marker of embryo aneuploidy. On the other hand, digitally estimated TL is the most prominent univariant factor and showed a significant positive association with pregnancy outcomes (P < 0.01, odds ratio 79.1). We combined several maternal and embryo parameters to study the joint effects on successful implantation. The machine learning models, namely decision tree and random forest, were trained and yielded classification accuracy of 0.82 and 0.91, respectively. Taken together, these results support the vital role of TL in governing implantation potential, perhaps through the ability to control embryo survival after transfer. LIMITATIONS REASONS FOR CAUTION: The small sample size limits our study as only 216 blastocysts were transferred. The number was further reduced to 153 blastocysts, where pregnancy outcomes could be accurately traced. The other limitation of this study is that all data were collected from a single IVF center. The uniform and controlled operation of IVF cycles in a single center may cause selection bias. WIDER IMPLICATIONS OF THE FINDINGS: We present novel findings to show that digitally estimated TL at the blastocyst stage is a predictor of pregnancy capacity after a FET cycle. As elective single-embryo transfer has become the mainstream direction in reproductive medicine, prioritizing embryos based on their implantation potential is crucial for clinical infertility treatment in order to reduce twin pregnancy rate and the time to pregnancy in an IVF center. The AI-powered, random forest prediction model established in this study thus provides a way to improve clinical practice and optimize the chances for people with fertility problems to achieve parenthood. STUDY FUNDING/COMPETING INTERESTS: This study was supported by a grant from the National Science and Technology Council, Taiwan (MOST 108-2321-B-006-013 -). There were no competing interests. TRIAL REGISTRATION NUMBER: N/A.

7.
Int J Med Sci ; 10(8): 988-94, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23801885

RESUMEN

BACKGROUND: Previously, we identified a sequence variant (N375S) of c-Met gene, however, its association with lung cancer risk and prognosis remain undefined. PATIENTS AND METHODS: We investigated the genotype distribution of the c-Met-N375S sequence variant in 206 lung cancer patients and 207 non-cancer controls in the Taiwanese population by DNA sequencing. RESULTS: Lung cancer patients with variant A/G and G/G genotypes showed 1.08-fold increased cancer risk when compared to patients with the wild-type A/A genotype (95% CI, 0.60-1.91). There were no significant differences in postoperative survival between c-Met-N375S and wild-type patients. In the cell model, the c-Met-N375S cells showed a decrease in cell death upon treatment with MET inhibitor SU11274 compared to wild-type cells. CONCLUSION: Our data suggest that the c-Met-N375S sequence variant may not play a significant role in cancer susceptibility and the prognosis of lung cancer patients. The correlation with chemoresponse of c-Met-N375S is worth further investigation in patients receiving MET therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Predisposición Genética a la Enfermedad , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogénicas c-met/genética , Secuencia de Bases , Estudios de Casos y Controles , Cartilla de ADN , Femenino , Humanos , Neoplasias Pulmonares/patología , Masculino , Reacción en Cadena de la Polimerasa , Pronóstico
8.
Sci Adv ; 9(15): eade3422, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37043564

RESUMEN

Metastasis is the main cause of death in many cancers including colorectal cancer (CRC); however, the underlying mechanisms responsible for metastatic progression remain largely unknown. We found that nuclear TYRO3 receptor tyrosine kinase is a strong predictor of poor overall survival in patients with CRC. The metastasis-promoting function of nuclear TYRO3 requires its kinase activity and matrix metalloproteinase-2 (MMP-2)-mediated cleavage but is independent of ligand binding. Using proteomic analysis, we identified bromodomain-containing protein 3 (BRD3), an acetyl-lysine reading epigenetic regulator, as one of nuclear TYRO3's substrates. Chromatin immunoprecipitation-sequencing data reveal that TYRO3-phosphorylated BRD3 regulates genes involved in anti-apoptosis and epithelial-mesenchymal transition. Inhibition of MMP-2 or BRD3 activity by selective inhibitors abrogates nuclear TYRO3-induced drug resistance and metastasis in organoid culture and in orthotopic mouse models. These data demonstrate that MMP-2/TYRO3/BRD3 axis promotes the metastasis of CRC, and blocking this signaling cascade is a promising approach to ameliorate CRC malignancy.


Asunto(s)
Neoplasias Colorrectales , Metaloproteinasa 2 de la Matriz , Animales , Ratones , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metástasis de la Neoplasia , Proteómica , Proteínas Tirosina Quinasas Receptoras/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Orphanet J Rare Dis ; 17(1): 451, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36578049

RESUMEN

BACKGROUND: Epidermolysis bullosa (EB) is a heterogeneous group of hereditary skin diseases characterized by skin fragility. Primary data on Taiwanese population remain scarce. METHODS: We gathered clinical information from EB patients at National Cheng Kung University Hospital from January, 2012, to June, 2021. Diagnostic tests including transmission electron microscopy, immunofluorescence studies, and whole-exome sequencing (WES) were performed. The pathogenicity of novel splice-site mutations was determined through reverse transcriptase-PCR of skin mRNA followed by Sanger and/or RNA sequencing. RESULTS: Seventy-seven EB patients from 45 families were included: 19 EB simplex, six junctional EB, and 52 dystrophic EB. Pathogenic variants were identified in 37 of 38 families (97.4%), in which WES was used as a first-line tool for mutational analysis; RNA sequencing determined pathogenic variants in the remaining one family. A total of 60 mutations in EB-related genes were identified, including 22 novel mutations. The mutations involved KRT5, KRT14, PLEC, COL17A1, LAMB3, LAMA3, ITGB4, and COL7A1. Over one-quarter of DEB patients had EB pruriginosa. CONCLUSIONS: The distinct clinical presentation and molecular pathology of EB in Taiwan expand our understanding of this disorder. WES was an effective first-line diagnostic tool for identifying EB-associated variants. RNA sequencing complemented WES when multiple potentially pathogenic splice-site mutations were found.


Asunto(s)
Epidermólisis Ampollosa Distrófica , Epidermólisis Ampollosa , Humanos , Secuenciación del Exoma , Taiwán , Epidermólisis Ampollosa/diagnóstico , Mutación/genética , Piel/patología , Epidermólisis Ampollosa Distrófica/patología , Colágeno Tipo VII/genética
10.
ACS Appl Bio Mater ; 4(3): 2475-2489, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35014366

RESUMEN

N-Hydroxy-p-(4-arylbutanamido)benzamides (HABAB) belong to one class of histone deacetylase inhibitors (HDACi), which regulate deacetylation of lysine residue's amino group in histone, which results in chromatin constriction. In addition, transcriptional knockdown of the genetic loci possessing the suppressor genes of tumor occurs. A tripodal, HABAB-capped gallamide dendron possessing thiol anchoring unit was prepared by the click method. The resultant hydrophilic dendritic unit was easily attached on the outer layer of CdSe/ZnS (i.e., core/shell type) quantum dots by thiolate-Zn interaction, as supported via 1H NMR spectroscopic analysis of the conjugate with its original property of fluorescence. The resulting, water-miscible nanohybrid (nano-HTPB) which bore trivalent, peripheral HABABs as the HDACi was efficiently taken up by cells of lung cancer and transported into the nuclei of cells in 3 h, as confirmed by confocal microscopy analysis. The concentration levels of 50% inhibition (IC50) after 48 h incubation of the nano-HTPB for A549 and H1299 lung cancer cell lines were 14 and 18 nM, respectively, which were about 150-fold lower than those of the parent HTPB analogues. Nano-HTPB at 20 nM induced the knockdown of cell cycle at second growth/mitosis (i.e., G2/M) transition, which eventually led to apoptosis of lung cancer cells, demonstrating that the nano-HTPB was much more potent in inhibiting lung cancer cell growth in a synergistic manner than the parent HTPB analogues. In addition, the dendritic HABAB-capped nanohybrid, nano-HTPB, is more effective than the parent HTPB analogues both in vitro and in vivo. Furthermore, the nano-HTPB is more effective than the parent HTPB to increase the acetylation level of proteins related to histone and nonhistone like p53 and tubulin. Our results confirmed that covalent encapsulation of quantum dots with peripheral, triantennary HDACis represented a feasible strategy for synergistic drug delivery with enhanced biological effects.


Asunto(s)
Antineoplásicos/farmacología , Materiales Biocompatibles/farmacología , Colorantes Fluorescentes/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Amidas/química , Amidas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Benzamidas/química , Benzamidas/farmacología , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Compuestos de Cadmio/química , Compuestos de Cadmio/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ensayo de Materiales , Estructura Molecular , Tamaño de la Partícula , Puntos Cuánticos/química , Compuestos de Selenio/química , Compuestos de Selenio/farmacología , Sulfuros/química , Sulfuros/farmacología , Compuestos de Zinc/química , Compuestos de Zinc/farmacología
11.
BMC Med Genomics ; 14(Suppl 3): 212, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789231

RESUMEN

BACKGROUND: Skeletal dysplasia (SD) is one of the most common inherited neonatal disorders worldwide, where the recurrent pathogenic mutations in the FGFR2, FGFR3, COL1A1, COL1A2 and COL2A1 genes are frequently reported in both non-lethal and lethal SD. The traditional prenatal diagnosis of SD using ultrasonography suffers from lower accuracy and performed at latter gestational stage. Therefore, it remains in desperate need of precise and accurate prenatal diagnosis of SD in early pregnancy. With the advancements of next-generation sequencing (NGS) technology and bioinformatics analysis, it is feasible to develop a NGS-based assay to detect genetic defects in association with SD in the early pregnancy. METHODS: An ampliseq-based targeted sequencing panel was designed to cover 87 recurrent hotspots reported in 11 common dominant SD and run on both Ion Proton and NextSeq550 instruments. Thirty-six cell-free and 23 genomic DNAs were used for assay developed. Spike-in DNA prepared from standard sample harboring known mutation and normal sample were also employed to validate the established SD workflow. Overall performances of coverage, uniformity, and on-target rate, and the detecting limitations on percentage of fetal fraction and read depth were evaluated. RESULTS: The established targeted-seq workflow enables a single-tube multiplex PCR for library construction and shows high amplification efficiency and robust reproducibility on both Ion Proton and NextSeq550 platforms. The workflow reaches 100% coverage and both uniformity and on-target rate are > 96%, indicating a high quality assay. Using spike-in DNA with different percentage of known FGFR3 mutation (c.1138 G > A), the targeted-seq workflow demonstrated the ability to detect low-frequency variant of 2.5% accurately. Finally, we obtained 100% sensitivity and 100% specificity in detecting target mutations using established SD panel. CONCLUSIONS: An expanded panel for rapid and cost-effective genetic detection of SD has been developed. The established targeted-seq workflow shows high accuracy to detect both germline and low-frequency variants. In addition, the workflow is flexible to be conducted in the majority of the NGS instruments and ready for routine clinical application. Taken together, we believe the established panel provides a promising diagnostic or therapeutic strategy for prenatal genetic testing of SD in routine clinical practice.


Asunto(s)
Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Femenino , Humanos , Mutación , Embarazo , Diagnóstico Prenatal , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN
12.
Nat Commun ; 12(1): 4441, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34290255

RESUMEN

BRD4, a Bromodomain and Extraterminal (BET) protein family member, is a promising anti-cancer drug target. However, resistance to BET inhibitors targeting BRD4 is common in solid tumors. Here, we show that cancer-associated fibroblast (CAF)-activated stromal signaling, interleukin-6/8-JAK2, induces BRD4 phosphorylation at tyrosine 97/98 in colorectal cancer, resulting in BRD4 stabilization due to interaction with the deubiquitinase UCHL3. BRD4 phosphorylation at tyrosine 97/98 also displays increased binding to chromatin but reduced binding to BET inhibitors, resulting in resistance to BET inhibitors. We further show that BRD4 phosphorylation promotes interaction with STAT3 to induce chromatin remodeling through concurrent binding to enhancers and super-enhancers, supporting a tumor-promoting transcriptional program. Inhibition of IL6/IL8-JAK2 signaling abolishes BRD4 phosphorylation and sensitizes BET inhibitors in vitro and in vivo. Our study reveals a stromal mechanism for BRD4 activation and BET inhibitor resistance, which provides a rationale for developing strategies to treat CRC more effectively.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Neoplasias Colorrectales/metabolismo , Resistencia a Antineoplásicos , Factores de Transcripción/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Fibroblastos Asociados al Cáncer/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Cromatina/metabolismo , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Janus Quinasa 2/metabolismo , Fosforilación , Dominios Proteicos , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Factores de Transcripción/antagonistas & inhibidores , Microambiente Tumoral , Ubiquitina Tiolesterasa/metabolismo
13.
Front Genet ; 11: 897, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32922437

RESUMEN

Whole-exome sequencing (WES) has advantages over the traditional molecular test by screening 20,000 genes simultaneously and has become an invaluable tool for genetic diagnosis in clinical practice. Here, we reported a family with a child and a fetus presenting undiagnosed skeletal dysplasia phenotypes, while the parents were asymptomatic. WES was applied to the parents and affected fetus to identify the genetic cause of the phenotypes. We identified novel compound heterozygous mutations consisting of a single-nucleotide variant (SNV) and a large deletion in the CRTAP gene (NM_006371.4:c.1153-3C > G/hg19 chr3:g.32398837_34210906del). Genetic alterations of CRTAP are known to cause osteogenesis imperfecta (OI) in an autosomal recessive manner. Further examination of the proband's elder sibling who was diagnosed as OI after birth found that she shares the inherited compound heterozygous mutations of CRTAP; thus, the findings support the disease-causing role of CRTAP mutations. Through the in vitro molecular test and in silico analysis, the deleterious effects of the splicing-altering SNV in CRTAP (c.1153-3C > G) on gene product were confirmed. Collectively, our WES-based pathogenic variant discovery pipeline identifies the SNVs and copy number variation to delineate the genetic cause on the proband affected with OI. The data not only extend the knowledge of mutation spectrum in patients with skeletal dysplasia but also demonstrate that WES holds great promise for genetic screening of rare diseases in clinical settings.

14.
Oncotarget ; 8(65): 108556-108570, 2017 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-29312551

RESUMEN

We previously identified a novel Rab small GTPase protein, Rab37, which plays a critical role in regulating exocytosis of secreted glycoproteins, tissue inhibitor of metalloproteinases 1 (TIMP1) to suppress lung cancer metastasis. Patients with preserved Rab37 protein expression were associated with better prognosis. However, a significant number of the patients with preserved Rab37 expression showed poor survival. In addition, the molecular mechanism for the regulation of Rab37-mediated exocytosis remained to be further identified. Therefore, we investigated the molecular mechanism underlying the dysregulation of Rab37-mediated exocytosis and metastasis suppression. Here, we report a novel mechanism for Rab37 inactivation by phosphorylation. Lung cancer patients with preserved Rab37, low TIMP1, and high PKCα expression profile correlate with worse progression-free survival examined by Kaplan-Meier survival, suggesting that PKCα overexpression leads to dysfunction of Rab37. This PKCα-Rab37-TIMP1 expression profile predicts the poor outcome by multivariate Cox regression analysis. We also show that Rab37 is phosphorylated by protein kinase Cα (PKCα) at threonine 172 (T172), leading to attenuation of its GTP-bound state, and impairment of the Rab37-mediated exocytosis of TIMP1, and thus reduces its suppression activity on lung cancer cell motility. We further demonstrate that PKCα reduces vesicle colocalization of Rab37 and TIMP1, and therefore inhibits Rab37-mediated TIMP1 trafficking. Moreover, Phospho-mimetic aspartate substitution mutant T172D of Rab37 significantly promotes tumor metastasis in vivo. Our findings reveal a novel regulation of Rab37 activity by PKCα-mediated phosphorylation which inhibits exocytic transport of TIMP1 and thereby enhances lung tumor metastasis.

15.
Clin Cancer Res ; 11(15): 5410-6, 2005 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16061855

RESUMEN

PURPOSE AND EXPERIMENTAL DESIGN: The etiologic association and prognostic significance of mismatch repair gene/protein alterations have never been examined in nonsmoking lung cancer. Therefore, we investigated protein expression and promoter hypermethylation of hMLH1 and hMSH2 genes in the tumor specimens from 105 nonsmoking female non-small cell lung cancer (NSCLC) patients. Immunohistochemistry and restriction enzyme-based multiplex PCR were used to examine the protein expression and promoter hypermethylation, respectively. The occurrence of gene/protein alteration for each gene was compared with the patients' clinicopathologic variables as well as the overall survival and cancer-specific survival rates. RESULTS: Protein expression alteration and promoter hypermethylation were observed in 66% to 67% and 30% to 34% of tumor specimens for hMLH1 and hMSH2 genes, respectively. Loss of hMLH1 and hMSH2 protein expression was significantly associated with their promoter hypermethylation (P < 0.0001 and P = 0.049). The overall survival and cancer-specific survival rates were significantly lower in patients with promoter hypermethylation of hMSH2 gene than in those without hypermethylation (P = 0.038 and P = 0.004). The poor prognosis was still especially significant in adenocarcinoma (P = 0.035 and P = 0.061) and early-stage NSCLC patients (P = 0.067 and P = 0.041). CONCLUSION: Our data suggest that hMLH1 is the major altered mismatch repair gene involved in nonsmoking NSCLC tumorigenesis and that promoter methylation is the predominant mechanism in hMLH1 and hMSH2 deregulation. In addition, promoter methylation of the hMSH2 gene may be a potential prognostic factor in nonsmoking female lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/genética , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Regiones Promotoras Genéticas , Adulto , Anciano , Enzimas de Restricción del ADN/química , Enzimas de Restricción del ADN/farmacología , Femenino , Humanos , Inmunohistoquímica , Persona de Mediana Edad , Metástasis de la Neoplasia , Reacción en Cadena de la Polimerasa , Pronóstico , Fumar , Factores de Tiempo , Resultado del Tratamiento
16.
J Thorac Oncol ; 10(1): 189-98, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25490006

RESUMEN

INTRODUCTION: SLIT2, a secreted protein, has been found to inactivate Cdc42 GTPase to modulate neural cell migration. However, alteration of SLIT2-mediated Cdc42 in terms of migration regulation remains undefined in esophageal squamous cell carcinoma (ESCC). METHODS: We report here in ESCC cell, animal, and clinical models that SLIT2 acts as a migration suppressor and serves as a prognostic biomarker. RESULTS: The immunohistochemistry data indicated that 31.8% (49 of 154) of tumors from ESCC patients showed low expression of SLIT2 protein which correlated with poor overall survival and disease-free survival. DNA methylation analysis suggested that promoter hypermethylation is responsible for low expression of SLIT2 in ESCC. Knockdown of SLIT2 increased ESCC cell migration, while SLIT2 stable overexpression reduced cell migration. ESCC cells treated with conditioned media from cells overexpressing SLIT2 also suppressed cell migration. Importantly, silencing of SLIT2 decreased the complex formation, and thus induced Cdc42 activity and promoted membrane localization of focal adhesion kinase and Paxillin. Anti-metastatic effect of SLIT2 was confirmed in an experimental metastasis model of SLIT2 knockdown ESCC cells. CONCLUSION: Our results provide novel evidence that low expression of SLIT2 correlates with poor prognosis and promotes metastasis in ESCC, which may be regulated by the Cdc42-mediated pathways.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Carcinoma de Células Escamosas de Esófago , Femenino , Humanos , Inmunohistoquímica , Metástasis Linfática , Masculino , Ratones , Ratones SCID , Metástasis de la Neoplasia , Pronóstico
17.
J Thorac Oncol ; 9(9): 1305-15, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25122426

RESUMEN

INTRODUCTION: DNA methyltransferase 3B (DNMT3B) contributes to de novo DNA methylation and its overexpression promotes tumorigenesis. However, whether DNMT3B is upregulated by transcriptional deregulation remains unclear. METHODS: We studied the transcriptional repression of DNMT3B by forkhead O transcription factor 3a (FOXO3a) in lung cancer cell, animal, and clinical models. RESULTS: The results of luciferase reporter assay showed that FOXO3a negatively regulated DNMT3B promoter activity by preferentially interacting with the binding element FOXO3a-E (+166 to +173) of DNMT3B promoter. Ectopically overexpressed FOXO3a or combined treatment with doxorubicin to induce FOXO3a nuclear accumulation further bound at the distal site, FOXO3a-P (-249 to -242) by chromatin-immunoprecipitation assay. Knockdown of FOXO3a resulted in an open chromatin structure and high DNMT3B mRNA and protein expression. Abundant FOXO3a repressed DNMT3B promoter by establishing a repressed chromatin structure. Note that FOXO3a is a degradation substrate of MDM2 E3-ligase. Cotreatment with doxorubicin and MDM2 inhibitor, Nutlin-3, further enforced abundant nuclear accumulation of FOXO3a resulting in decrease expression of DNMT3B leading to synergistic inhibition of tumor growth and decrease of methylation status on tumor suppressor genes in xenograft specimens. Clinically, lung cancer patients with DNMT3B high, FOXO3a low, and MDM2 high expression profile correlated with poor prognosis examined by immunohistochemistry and Kaplan-Meier survival analysis. CONCLUSIONS: We reveal a new mechanism that FOXO3a transcriptionally represses DNMT3B expression and this regulation can be attenuated by MDM2 overexpression in human lung cancer model. Cotreatment with doxorubicin and Nutlin-3 is a novel therapeutic strategy through epigenetic modulation.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Factores de Transcripción Forkhead/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , ARN Neoplásico/genética , Animales , Western Blotting , ADN (Citosina-5-)-Metiltransferasas/biosíntesis , Metilación de ADN , Femenino , Estudios de Seguimiento , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/biosíntesis , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos BALB C , Microscopía Confocal , Neoplasias Experimentales , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-mdm2/biosíntesis , Estudios Retrospectivos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas , ADN Metiltransferasa 3B
18.
Cancer Lett ; 346(1): 84-93, 2014 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-24355296

RESUMEN

Many histone deacetylase (HDAC) inhibitors show limited therapeutic effects for solid tumors. Here, we develop a novel HDAC inhibitor YCW1 and verify the combination effect of YCW1 and cisplatin in lung cancer pre-clinical models. YCW1 exerted cancer-specific cytotoxicity via mitochondria-mediated apoptosis. YCW1 and cisplatin showed synergistic anti-tumor effects through impairment of DNA damage repair. YCW1 inhibited tumor growth in lung orthotopic and subcutaneously implanted xenograft models. YCW1 significantly suppressed lung metastases via inhibition of focal adhesion complex. Our findings suggested that YCW1 is a potential HDAC inhibitor for lung cancer treatment as single and in combination regimens with cisplatin.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Azidas/administración & dosificación , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Cisplatino/administración & dosificación , Inhibidores de Histona Desacetilasas/administración & dosificación , Ácidos Hidroxámicos/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Animales , Sinergismo Farmacológico , Humanos , Masculino , Ratones Endogámicos BALB C , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ensayos Antitumor por Modelo de Xenoinjerto
19.
PLoS One ; 8(4): e62082, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23646116

RESUMEN

Some potent chemotherapy drugs including tubulin-binding agents had been developed from nature plants, such as podophyllotoxin and paclitaxel. However, poor cytotoxic selectivity, serious side-effects, and limited effectiveness are still the major concerns in their therapeutic application. We developed a fully synthetic podophyllotoxin derivative named Ching001 and investigated its anti-tumor growth effects and mechanisms in lung cancer preclinical models. Ching001 showed a selective cytotoxicity to different lung cancer cell lines but not to normal lung cells. Ching001 inhibited the polymerization of microtubule resulting in mitotic arrest as evident by the accumulation of mitosis-related proteins, survivin and aurora B, thereby leading to DNA damage and apoptosis. Ching001 also activated pro-apoptotic ER stress signaling pathway. Intraperitoneal injection of 2 mg/kg Ching001 significantly inhibited the tumor growth of A549 xenograft, while injection of 0.2 mg/kg Ching001 decreased the lung colonization ability of A549 cells in experimental metastasis assay. These anti-tumor growth and lung colonization inhibition effects were stronger than those of paclitaxel treatment at the same dosage. The xenograft tumor tissue stains further confirmed that Ching001 induced mitosis arrest and tumor apoptosis. In addition, the hematology and biochemistry tests of blood samples as well as tissue examinations indicated that Ching001 treatment did not show apparent organ toxicities in tested animals. We provided preclinical evidence that novel synthetic microtubule inhibitor Ching001, which can trigger DNA damage and apoptosis by inducing mitotic arrest and ER stress, is a potential anti-cancer compound for further drug development.


Asunto(s)
Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mitosis/efectos de los fármacos , Podofilotoxina/farmacología , Animales , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/toxicidad , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Estrés del Retículo Endoplásmico/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Ratones , Microtúbulos/metabolismo , Modelos Biológicos , Podofilotoxina/análogos & derivados , Podofilotoxina/toxicidad , Multimerización de Proteína/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Clin Cancer Res ; 18(16): 4325-33, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22733537

RESUMEN

PURPOSE: Overexpression of DNA 5'-cytosine-methyltransferase 3A (DNMT3A), which silences genes including tumor suppressor genes (TSG), is involved in many cancers. Therefore, we examined whether the transcriptional deregulation of RB/MDM2 pathway was responsible for DNMT3A overexpression and analyzed the therapeutic potential of MDM2 antagonist for reversing aberrant DNA methylation status in lung cancer. EXPERIMENTAL DESIGN: The regulation of DNMT3A expression and TSG methylation status by RB/MDM2 was assessed in cancer cell lines and patients. The effects of Nutlin-3, an MDM2 antagonist, on tumor growth in relation to DNMT3A expression and TSG methylation status were examined by xenograft model. RESULTS: We found that RB suppressed DNMT3A promoter activity and mRNA/protein expression through binding with E2F1 protein to the DNMT3A promoter, leading to the decrease of methylation level globally and TSG specifically. In addition, MDM2 dramatically induced DNMT3A expression by negative control over RB. In clinical study, MDM2 overexpression inversely correlated with RB expression, while positively associating with overexpression of DNMT3A in samples from patients with lung cancer. Patients with high MDM2 and low RB expression showed DNMT3A overexpression with promoter hypermethylation in TSGs. Treatment with Nutlin-3, an MDM2 antagonist, significantly suppressed tumor growth and reduced DNA methylation level of TSGs through downregulation of DNMT3A expression in xenograft studies. CONCLUSIONS: This study provides the first cell, animal, and clinical evidence that DNMT3A is transcriptionally repressed, in part, by RB/E2F pathway and that the repression could be attenuated by MDM2 overexpression. MDM2 is a potent target for anticancer therapy to reverse aberrant epigenetic status in cancers.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Factor de Transcripción E2F1/genética , Regulación Neoplásica de la Expresión Génica , Genes de Retinoblastoma , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , Animales , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , Metilación de ADN , ADN Metiltransferasa 3A , Femenino , Expresión Génica , Humanos , Imidazoles/metabolismo , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Piperazinas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Transducción de Señal , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA