Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Reprod Toxicol ; 126: 108600, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670349

RESUMEN

Tributyltin (TBT), an organotin endocrine-disrupting substance, is recognized as one of the important toxic environmental pollutants. The present study was carried out to investigate the toxic effects of TBT on behavior and the ovary of adult zebrafish with a focus on oxidative stress markers and oocyte maturation. Adult zebrafish were exposed to three different concentrations (125, 250, and 500 ng/L of water) of TBT for 28 days. TBT exposure produced a concentration-dependent negative effect on the body weight and behavior (anxiety-like symptoms) of adult zebrafish. Alterations in the activity of superoxide dismutase (SOD) and catalase (CAT), the total antioxidant capacity of ovarian tissue by the highest exposure level of TBT resulted in lipid peroxidation as indicated by increased malondialdehyde (MDA) level. The numbers of early-vitellogenic oocytes were significantly increased in zebrafish exposed to TBT as low as 125 ng/L. However, the numbers and size of fully-grown (mature) oocytes were significantly reduced in the highest exposure group only. Correlation between the MDA level and pre-vitellogenic oocytes in the 500 ng/L group indicated that lipid peroxidation prevented the maturation of pre-vitellogenic oocytes. TBT exposure produced significant histological changes in the ovary as evidenced by disturbed maturation of oocytes. In conclusion, TBT adversely affected the maturation of oocytes in zebrafish ovary through oxidative stress-mediated mechanisms.


Asunto(s)
Conducta Animal , Catalasa , Peroxidación de Lípido , Malondialdehído , Oocitos , Ovario , Estrés Oxidativo , Superóxido Dismutasa , Compuestos de Trialquiltina , Contaminantes Químicos del Agua , Pez Cebra , Animales , Compuestos de Trialquiltina/toxicidad , Estrés Oxidativo/efectos de los fármacos , Femenino , Ovario/efectos de los fármacos , Ovario/metabolismo , Ovario/patología , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Superóxido Dismutasa/metabolismo , Conducta Animal/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Malondialdehído/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Catalasa/metabolismo , Disruptores Endocrinos/toxicidad
2.
Glycobiology ; 23(11): 1270-80, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23964097

RESUMEN

Hyaluronan (HA) is widely detected in biological samples and its concentration is most commonly determined by the use of a labeled specific HA binding protein (aggrecan G1-IGD-G2, HABP), employing membrane blotting and sandwich enzyme-linked immunosorbent assay (ELISA)-like methods. However, the detected signal intensity or the quantified value obtained by using these surface-based methods is related to the molecular mass (M) of HA, especially for HA in the low M range below ~150 kDa. At the same mass or mass concentration, higher M HA gives a higher signal than lower M HA. We have experimentally determined the quantitative relationship between the M of HA (in the range 20-150 kDa) and the relative signal intensity in comparison with a standard HA, in a sandwich ELISA-like assay. An M-dependent signal correction factor (SCF) was calculated and used to correct the signal intensity, so that the corrected concentration value would more accurately reflect the true HA concentration in solution. The SCF for polydisperse low M HA was also calculated and compared with experimental results. When the molecular mass distribution of an HA sample is determined by a method such as gel electrophoresis, then its appropriately averaged SCF can be calculated and used to correct the signal in sandwich ELISA to obtain a more accurate concentration estimation. The correction method works for HA with M between ~150 and 20 kDa, but lower M HA is too poorly detected for useful analysis. The physical basis of the M-dependent detection is proposed to be the increase in detector-accessible fraction of each surface-bound molecule as M increases.


Asunto(s)
Receptores de Hialuranos/química , Ácido Hialurónico/química , Biotinilación , Densitometría , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Humanos , Immunoblotting , Peso Molecular
3.
Anal Biochem ; 417(1): 41-9, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21684248

RESUMEN

Agarose and polyacrylamide gel electrophoresis systems for the molecular mass-dependent separation of hyaluronan (HA) in the size range of approximately 5-500 kDa were investigated. For agarose-based systems, the suitability of different agarose types, agarose concentrations, and buffer systems was determined. Using chemoenzymatically synthesized HA standards of low polydispersity, the molecular mass range was determined for each gel composition over which the relationship between HA mobility and logarithm of the molecular mass was linear. Excellent linear calibration was obtained for HA molecular mass as low as approximately 9 kDa in agarose gels. For higher resolution separation, and for extension to molecular masses as low as approximately 5 kDa, gradient polyacrylamide gels were superior. Densitometric scanning of stained gels allowed analysis of the range of molecular masses present in a sample as well as calculation of weight-average and number-average values. The methods were validated for polydisperse HA samples with viscosity-average molecular masses of 112, 59, 37, and 22 kDa at sample loads of 0.5 µg (for polyacrylamide) to 2.5 µg (for agarose). Use of the methods for electrophoretic mobility shift assays was demonstrated for binding of the HA-binding region of aggrecan (recombinant human aggrecan G1-IGD-G2 domains) to a 150-kDa HA standard.


Asunto(s)
Electroforesis en Gel de Agar/métodos , Electroforesis en Gel de Poliacrilamida/métodos , Ácido Hialurónico/análisis , Ácido Hialurónico/química , Tampones (Química) , Calibración , Densitometría , Ensayo de Cambio de Movilidad Electroforética , Humanos , Ácido Hialurónico/aislamiento & purificación , Peso Molecular , Estándares de Referencia , Reproducibilidad de los Resultados , Sefarosa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA