Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Neurobiol Learn Mem ; 176: 107323, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053429

RESUMEN

Novelty triggers an increase in orienting behavior that is critical to evaluate the potential salience of unknown events. As novelty becomes familiar upon repeated encounters, this increase in response rapidly habituates as a form of behavioral adaptation underlying goal-directed behaviors. Many neurodevelopmental, psychiatric and neurodegenerative disorders are associated with abnormal responses to novelty and/or familiarity, although the neuronal circuits and cellular/molecular mechanisms underlying these natural behaviors in the healthy brain are largely unknown, as is the maladaptive processes that occur to induce impairment of novelty signaling in diseased brains. In rodents, the development of cutting-edge tools that allow for measurements of real time activity dynamics in selectively identified neuronal ensembles by gene expression signatures is beginning to provide advances in understanding the neural bases of the novelty response. Accumulating evidence indicate that midbrain circuits, the majority of which linked to dopamine transmission, promote exploratory assessments and guide approach/avoidance behaviors to different types of novelty via specific projection sites. The present review article focuses on midbrain circuit analysis relevant to novelty processing and habituation with familiarity.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Conducta Exploratoria/fisiología , Mesencéfalo/fisiología , Red Nerviosa/fisiología , Reconocimiento en Psicología/fisiología , Animales , Habituación Psicofisiológica , Humanos , Ratones , Núcleos del Rafe/fisiología , Ratas
2.
J Neurosci ; 37(22): 5463-5474, 2017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28473645

RESUMEN

Binge alcohol drinking, a behavior characterized by rapid repeated alcohol intake, is most prevalent in young adults and is a risk factor for excessive alcohol consumption and alcohol dependence. Although the alteration of synaptic plasticity is thought to contribute to this behavior, there is currently little evidence that this is the case. We used drinking in the dark (DID) as a model of binge alcohol drinking to assess its effects on spike timing-dependent plasticity (STDP) in medium spiny neurons (MSNs) of the core nucleus accumbens (NAc) by combining patch-clamp recordings with calcium imaging and optogenetics. After 2 weeks of daily alcohol binges, synaptic plasticity was profoundly altered. STDP in MSNs expressing dopamine D1 receptors shifted from spike-timing-dependent long-term depression (tLTD), the predominant form of plasticity in naive male mice, to spike-timing-dependent long-term potentiation (tLTP) in DID mice, an effect that was totally reversed in the presence of 4 µm SCH23390, a dopamine D1 receptor antagonist. In MSNs presumably expressing dopamine D2 receptors, tLTP, the main form of plasticity in naive mice, was inhibited in DID mice. Interestingly, 1 µm sulpiride, a D2 receptor antagonist, restored tLTP. Although we observed no alterations of AMPA and NMDA receptor properties, we found that the AMPA/NMDA ratio increased at cortical and amygdaloid inputs but not at hippocampal inputs. Also, DID effects on STDP were accompanied by lower dendritic calcium transients. These data suggest that the role of dopamine in mediating the effects of binge alcohol drinking on synaptic plasticity of NAc MSNs differs markedly whether these neurons belong to the direct or indirect pathways.SIGNIFICANCE STATEMENT We examined the relationship between binge alcohol drinking and spike timing-dependent plasticity in nucleus accumbens (NAc) neurons. We found that repeated drinking bouts modulate differently synaptic plasticity in medium spiny neurons of the accumbens direct and indirect pathways. While timing-dependent long-term depression switches to long-term potentiation (LTP) in the former, timing-dependent LTP is inhibited in the latter. These effects are not accompanied by changes in AMPA and NMDA receptor properties at cortical, amygdaloid, and hippocampal synapses. Interestingly, dopamine D1 and D2 receptor antagonists have opposite effects on plasticity. Our data show that whether core NAc medium spiny neurons belong to the direct or indirect pathways determines the form of spike timing-dependent plasticity (STDP), the manner by which STDP responds to binge alcohol drinking, and its sensitivity to dopamine receptor antagonists.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/fisiopatología , Plasticidad Neuronal , Núcleo Accumbens/fisiopatología , Receptores Dopaminérgicos/metabolismo , Transmisión Sináptica , Potenciales de Acción , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/fisiopatología , Transducción de Señal , Sinapsis/metabolismo
3.
Handb Exp Pharmacol ; 248: 187-212, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29423839

RESUMEN

Ethanol and nicotine can modulate the activity of several neurotransmitter systems and signalling pathways. Interactions between ethanol and nicotine can also occur via common molecular targets including nicotinic acetylcholine receptors (nAChRs). These effects can induce molecular and synaptic adaptations that over time, are consolidated in brain circuits that reinforce drug-seeking behavior, contribute to the development of withdrawal symptoms during abstinence and increase the susceptibility to relapse. This chapter will discuss the acute and chronic effects of ethanol and nicotine within the mesolimbic reward pathway and brain circuits involved in learning, memory, and withdrawal. Individual and common molecular targets of ethanol and nicotine within these circuits are also discussed. Finally, we review studies that have identified potential molecular and neuronal processes underlying the high incidence of ethanol and nicotine co-use that may contribute to the development of ethanol and nicotine co-addiction.


Asunto(s)
Etanol/farmacología , Nicotina/farmacología , Receptores Nicotínicos , Síndrome de Abstinencia a Sustancias , Tabaquismo , Interacciones Farmacológicas , Humanos
4.
J Neurosci ; 35(22): 8570-8, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-26041923

RESUMEN

Chronic nicotine exposure increases sensitivity to nicotine reward during a withdrawal period, which may facilitate relapse in abstinent smokers, yet the molecular neuroadaptation(s) that contribute to this phenomenon are unknown. Interestingly, chronic nicotine use induces functional upregulation of nicotinic acetylcholine receptors (nAChRs) in the mesocorticolimbic reward pathway potentially linking upregulation to increased drug sensitivity. In the ventral tegmental area (VTA), functional upregulation of nAChRs containing the α4 subunit (α4* nAChRs) is restricted to GABAergic neurons. To test the hypothesis that increased functional expression of α4* nAChRs in these neurons modulates nicotine reward behaviors, we engineered a Cre recombinase-dependent gene expression system to selectively express α4 nAChR subunits harboring a "gain-of-function" mutation [a leucine mutated to a serine residue at the 9' position (Leu9'Ser)] in VTA GABAergic neurons of adult mice. In mice expressing Leu9'Ser α4 nAChR subunits in VTA GABAergic neurons (Gad2(VTA):Leu9'Ser mice), subreward threshold doses of nicotine were sufficient to selectively activate VTA GABAergic neurons and elicit acute hypolocomotion, with subsequent nicotine exposures eliciting tolerance to this effect, compared to control animals. In the conditioned place preference procedure, nicotine was sufficient to condition a significant place preference in Gad2(VTA):Leu9'Ser mice at low nicotine doses that failed to condition control animals. Together, these data indicate that functional upregulation of α4* nAChRs in VTA GABAergic neurons confers increased sensitivity to nicotine reward and points to nAChR subtypes specifically expressed in GABAergic VTA neurons as molecular targets for smoking cessation therapeutics.


Asunto(s)
Neuronas GABAérgicas/fisiología , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Receptores Nicotínicos/metabolismo , Recompensa , Regulación hacia Arriba/genética , Área Tegmental Ventral/citología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Calbindina 2/metabolismo , Calbindinas/metabolismo , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Dihidro-beta-Eritroidina/farmacología , Relación Dosis-Respuesta a Droga , Neuronas GABAérgicas/efectos de los fármacos , Glutamato Descarboxilasa/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores Nicotínicos/genética , Tirosina 3-Monooxigenasa/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Área Tegmental Ventral/efectos de los fármacos
5.
RNA ; 20(12): 1890-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25344397

RESUMEN

Nicotine binds to and activates a family of ligand-gated ion channels, neuronal nicotinic acetylcholine receptors (nAChRs). Chronic nicotine exposure alters the expression of various nAChR subtypes, which likely contributes to nicotine dependence; however, the underlying mechanisms regulating these changes remain unclear. A growing body of evidence indicates that microRNAs (miRNAs) may be involved in nAChR regulation. Using bioinformatics, miRNA library screening, site-directed mutagenesis, and gene expression analysis, we have identified a limited number of miRNAs that functionally interact with the 3'-untranslated regions (3' UTRs) of mammalian neuronal nAChR subunit genes. In silico analyses revealed specific, evolutionarily conserved sites within the 3' UTRs through which the miRNAs regulate gene expression. Mutating these sites disrupted miRNA regulation confirming the in silico predictions. In addition, the miRNAs that target nAChR 3' UTRs are expressed in mouse brain and are regulated by chronic nicotine exposure. Furthermore, we show that expression of one of these miRNAs, miR-542-3p, is modulated by nicotine within the mesocorticolimbic reward pathway. Importantly, overexpression of miR-542-3p led to a decrease in the protein levels of its target, the nAChR ß2 subunit. Bioinformatic analysis suggests that a number of the miRNAs play a general role in regulating cholinergic signaling. Our results provide evidence for a novel mode of nicotine-mediated regulation of the mammalian nAChR gene family.


Asunto(s)
Canales Iónicos/biosíntesis , MicroARNs/biosíntesis , Nicotina/metabolismo , Receptores Nicotínicos/genética , Regiones no Traducidas 3' , Animales , Encéfalo/metabolismo , Regulación de la Expresión Génica/genética , Canales Iónicos/genética , Ligandos , Mamíferos , Ratones , MicroARNs/genética , Mutagénesis Sitio-Dirigida , Especificidad de Órganos , Receptores Nicotínicos/biosíntesis , Transducción de Señal/genética
6.
Alcohol Clin Exp Res ; 40(1): 62-72, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26727524

RESUMEN

BACKGROUND: Ethanol (EtOH) and nicotine abuse are 2 leading causes of preventable mortality in the world, but little is known about the pharmacological mechanisms mediating co-abuse. Few studies have examined the interaction of the acute effects of EtOH and nicotine. Here, we examine the effects of nicotine administration on the duration of EtOH-induced loss of righting reflex (LORR) and characterize the nature of their pharmacological interactions in C57BL/6J mice. METHODS: We assessed the effects of EtOH and nicotine and the nature of their interaction in the LORR test using isobolographic analysis after acute injection in C57BL/6J male mice. Next, we examined the importance of receptor efficacy using nicotinic partial agonists varenicline and sazetidine. We evaluated the involvement of major nicotinic acetylcholine receptor (nAChR) subtypes using nicotinic antagonist mecamylamine and nicotinic α4- and α7-knockout mice. The selectivity of nicotine's actions on EtOH-induced LORR was examined by testing nicotine's effects on the hypnotic properties of ketamine and pentobarbital. We also assessed the development of tolerance after repeated nicotine exposure. Last, we assessed whether the effects of nicotine on EtOH-induced LORR extend to hypothermia and EtOH intake in the drinking in the dark (DID) paradigm. RESULTS: We found that acute nicotine injection enhances EtOH's hypnotic effects in a synergistic manner and that receptor efficacy plays an important role in this interaction. Furthermore, tolerance developed to the enhancement of EtOH's hypnotic effects by nicotine after repeated exposure of the drug. α4* and α7 nAChRs seem to play an important role in nicotine-EtOH interaction in the LORR test. In addition, the magnitude of EtOH-induced LORR enhancement by nicotine was more pronounced in C57BL/6J than DBA/2J mice. Furthermore, acute nicotine enhanced ketamine and pentobarbital hypnotic effects in the mouse. Finally, nicotine enhanced EtOH-induced hypothermia but decreased EtOH intake in the DID test. CONCLUSIONS: Our results demonstrate that nicotine synergistically enhances EtOH-induced LORR in the mouse.


Asunto(s)
Temperatura Corporal/efectos de los fármacos , Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Reflejo de Enderezamiento/efectos de los fármacos , Animales , Azetidinas/farmacología , Interacciones Farmacológicas , Hipnóticos y Sedantes/farmacología , Hipotermia , Ketamina/farmacología , Mecamilamina/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Antagonistas Nicotínicos/farmacología , Pentobarbital/farmacología , Piridinas/farmacología , Receptores Nicotínicos/genética , Vareniclina/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/genética
7.
Mol Cell Neurosci ; 58: 22-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24184162

RESUMEN

The type III RNAse, Dicer, is responsible for the processing of microRNA (miRNA) precursors into functional miRNA molecules, non-coding RNAs that bind to and target messenger RNAs for repression. Dicer expression is essential for mouse midbrain development and dopaminergic (DAergic) neuron maintenance and survival during the early post-natal period. However, the role of Dicer in adult mouse DAergic neuron maintenance and survival is unknown. To bridge this gap in knowledge, we selectively knocked-down Dicer expression in individual DAergic midbrain areas, including the ventral tegmental area (VTA) and substantia nigra pars compacta (SNpc) via viral-mediated expression of Cre in adult floxed Dicer knock-in mice (Dicer(flox/flox)). Bilateral Dicer loss in the VTA resulted in progressive hyperactivity that was significantly reduced by the dopamine agonist, amphetamine. In contrast, decreased Dicer expression in the SNpc did not affect locomotor activity but did induce motor-learning impairment on an accelerating rotarod. Knock-down of Dicer in both midbrain regions of adult Dicer(flox/flox) mice resulted in preferential, progressive loss of DAergic neurons likely explaining motor behavior phenotypes. In addition, knock-down of Dicer in midbrain areas triggered neuronal death via apoptosis. Together, these data indicate that Dicer expression and, as a consequence, miRNA function, are essential for DAergic neuronal maintenance and survival in adult midbrain DAergic neuron brain areas.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Neuronas Dopaminérgicas/metabolismo , Mesencéfalo/metabolismo , Ribonucleasa III/metabolismo , Anfetamina/farmacología , Animales , Apoptosis , ARN Helicasas DEAD-box/genética , Agonistas de Dopamina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/fisiología , Aprendizaje , Locomoción , Mesencéfalo/citología , Mesencéfalo/crecimiento & desarrollo , Mesencéfalo/fisiología , Ratones , Especificidad de Órganos , Fenotipo , Ribonucleasa III/genética
8.
Nat Commun ; 15(1): 2891, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570514

RESUMEN

Animals are inherently motivated to explore social novelty cues over familiar ones, resulting in a novelty preference (NP), although the behavioral and circuit bases underlying NP are unclear. Combining calcium and neurotransmitter sensors with fiber photometry and optogenetics in mice, we find that mesolimbic dopamine (DA) neurotransmission is strongly and predominantly activated by social novelty controlling bout length of interaction during NP, a response significantly reduced by familiarity. In contrast, interpeduncular nucleus (IPN) GABAergic neurons that project to the lateral dorsal tegmentum (LDTg) were inhibited by social novelty but activated during terminations with familiar social stimuli. Inhibition of this pathway during NP increased interaction and bout length with familiar social stimuli, while activation reduced interaction and bout length with novel social stimuli via decreasing DA neurotransmission. These data indicate interest towards novel social stimuli is encoded by mesolimbic DA which is dynamically regulated by an IPN→LDTg circuit to control NP.


Asunto(s)
Dopamina , Núcleo Interpeduncular , Ratones , Animales , Dopamina/metabolismo , Tegmento Mesencefálico/metabolismo , Núcleo Interpeduncular/metabolismo , Transmisión Sináptica , Neuronas GABAérgicas/metabolismo
9.
Acta Neuropathol ; 126(3): 385-99, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23836290

RESUMEN

The recently identified GGGGCC repeat expansion in the noncoding region of C9ORF72 is the most common pathogenic mutation in patients with frontotemporal dementia (FTD) or amyotrophic lateral sclerosis (ALS). We generated a human neuronal model and investigated the pathological phenotypes of human neurons containing GGGGCC repeat expansions. Skin biopsies were obtained from two subjects who had >1,000 GGGGCC repeats in C9ORF72 and their respective fibroblasts were used to generate multiple induced pluripotent stem cell (iPSC) lines. After extensive characterization, two iPSC lines from each subject were selected, differentiated into postmitotic neurons, and compared with control neurons to identify disease-relevant phenotypes. Expanded GGGGCC repeats exhibit instability during reprogramming and neuronal differentiation of iPSCs. RNA foci containing GGGGCC repeats were present in some iPSCs, iPSC-derived human neurons and primary fibroblasts. The percentage of cells with foci and the number of foci per cell appeared to be determined not simply by repeat length but also by other factors. These RNA foci do not seem to sequester several major RNA-binding proteins. Moreover, repeat-associated non-ATG (RAN) translation products were detected in human neurons with GGGGCC repeat expansions and these neurons showed significantly elevated p62 levels and increased sensitivity to cellular stress induced by autophagy inhibitors. Our findings demonstrate that key neuropathological features of FTD/ALS with GGGGCC repeat expansions can be recapitulated in iPSC-derived human neurons and also suggest that compromised autophagy function may represent a novel underlying pathogenic mechanism.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Expansión de las Repeticiones de ADN/genética , Demencia Frontotemporal/genética , Mutación/genética , Neuronas/metabolismo , Proteínas/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteína C9orf72 , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Expansión de las Repeticiones de ADN/fisiología , Demencia Frontotemporal/metabolismo , Genotipo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Neuronas/citología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
10.
Neuroscience ; 529: 172-182, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37572877

RESUMEN

While the functional and behavioral role of the medial habenula (MHb) is still emerging, recent data indicate an involvement of this nuclei in regulating mood, aversion, and addiction. Unique to the MHb is a large cluster of cholinergic neurons that project to the interpeduncular nucleus and densely express acetylcholine receptors (AChRs) suggesting that the activity of these cholinergic neurons may be regulated by ACh itself. Whether endogenous ACh from within the habenula regulates cholinergic neuron activity has not been demonstrated. Supporting a role for ACh in modulating MHb activity, acetylcholinesterase inhibitors increased the firing rate of MHb cholinergic neurons in mouse habenula slices, an effect blocked by AChR antagonists and mediated by ACh which was detected via expressing fluorescent ACh sensors in MHb in vivo. To test if cholinergic afferents innervate MHb cholinergic neurons, we used anterograde and retrograde viral tracing to identify cholinergic inputs. Surprisingly, tracing experiments failed to detect cholinergic inputs into the MHb, including from the septum, suggesting that MHb cholinergic neurons may release ACh within the MHb to drive cholinergic activity. To test this hypothesis, we expressed channelrhodopsin in a portion of MHb cholinergic neurons while recording from non-opsin-expressing neurons. Light pulses progressively increased activity of MHb cholinergic neurons indicating feed-forward activation driven by MHb ACh release. These data indicate MHb cholinergic neurons may utilize a unique feed-forward mechanism to synchronize and increase activity by releasing local ACh.


Asunto(s)
Acetilcolina , Habénula , Ratones , Animales , Acetilcolina/farmacología , Habénula/fisiología , Acetilcolinesterasa , Neuronas Colinérgicas/fisiología , Colinérgicos/farmacología
11.
eNeuro ; 10(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36599671

RESUMEN

Midbrain dopaminergic (DAergic) neurons of the ventral tegmental area (VTA) are engaged by rewarding stimuli and encode reward prediction error to update goal-directed learning. However, recent data indicate that VTA DAergic neurons are functionally heterogeneous with emerging roles in aversive signaling, salience, and novelty, based in part on anatomic location and projection, highlighting a need to functionally characterize the repertoire of VTA DAergic efferents in motivated behavior. Previous work identifying a mesointerpeduncular circuit consisting of VTA DAergic neurons projecting to the interpeduncular nucleus (IPN), a midbrain area implicated in aversion, anxiety-like behavior, and familiarity, has recently come into question. To verify the existence of this circuit, we combined presynaptic targeted and retrograde viral tracing in the dopamine transporter-Cre mouse line. Consistent with previous reports, synaptic tracing revealed that axon terminals from the VTA innervate the caudal IPN; whereas, retrograde tracing revealed DAergic VTA neurons, predominantly in the paranigral region, project to the nucleus accumbens shell, as well as the IPN. To test whether functional DAergic neurotransmission exists in the IPN, we expressed the genetically encoded DA sensor, dLight 1.2, in the IPN of C57BL/6J mice and measured IPN DA signals in vivo during social and anxiety-like behavior using fiber photometry. We observed an increase in IPN DA signal during social investigation of a novel but not familiar conspecific and during exploration of the anxiogenic open arms of the elevated plus maze. Together, these data confirm VTA DAergic neuron projections to the IPN and implicate this circuit in encoding motivated exploration.


Asunto(s)
Núcleo Interpeduncular , Área Tegmental Ventral , Ratones , Animales , Área Tegmental Ventral/fisiología , Dopamina , Ratones Endogámicos C57BL , Núcleo Accumbens , Neuronas Dopaminérgicas/fisiología
12.
Elife ; 122023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36971355

RESUMEN

The development of tools to manipulate the mouse genome, including knockout and transgenic technology, has revolutionized our ability to explore gene function in mammals. Moreover, for genes that are expressed in multiple tissues or at multiple stages of development, the use of tissue-specific expression of the Cre recombinase allows gene function to be perturbed in specific cell types and/or at specific times. However, it is well known that putative tissue-specific promoters often drive unanticipated 'off-target' expression. In our efforts to explore the biology of the male reproductive tract, we unexpectedly found that expression of Cre in the central nervous system resulted in recombination in the epididymis, a tissue where sperm mature for ~1-2 weeks following the completion of testicular development. Remarkably, we not only observed reporter expression in the epididymis when Cre expression was driven from neuron-specific transgenes, but also when Cre expression in the brain was induced from an AAV vector carrying a Cre expression construct. A surprisingly wide range of Cre drivers - including six different neuronal promoters as well as the adipose-specific Adipoq Cre promoter - exhibited off-target recombination in the epididymis, with a subset of drivers also exhibiting unexpected activity in other tissues such as the reproductive accessory glands. Using a combination of parabiosis and serum transfer experiments, we find evidence supporting the hypothesis that Cre may be trafficked from its cell of origin to the epididymis through the circulatory system. Together, our findings should motivate caution when interpreting conditional alleles, and suggest the exciting possibility of inter-tissue RNA or protein trafficking in modulation of reproductive biology.


Asunto(s)
ARN , Semen , Ratones , Masculino , Animales , Ratones Transgénicos , ARN/metabolismo , Semen/metabolismo , Integrasas/genética , Integrasas/metabolismo , Regiones Promotoras Genéticas , Transporte de Proteínas , Mamíferos/genética
13.
Sci Adv ; 9(49): eadh9620, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38055830

RESUMEN

Stress coping involves innate and active motivational behaviors that reduce anxiety under stressful situations. However, the neuronal bases directly linking stress, anxiety, and motivation are largely unknown. Here, we show that acute stressors activate mouse GABAergic neurons in the interpeduncular nucleus (IPN). Stress-coping behavior including self-grooming and reward behavior including sucrose consumption inherently reduced IPN GABAergic neuron activity. Optogenetic silencing of IPN GABAergic neuron activation during acute stress episodes mimicked coping strategies and alleviated anxiety-like behavior. In a mouse model of stress-enhanced motivation for sucrose seeking, photoinhibition of IPN GABAergic neurons reduced stress-induced motivation for sucrose, whereas photoactivation of IPN GABAergic neurons or excitatory inputs from medial habenula potentiated sucrose seeking. Single-cell sequencing, fiber photometry, and optogenetic experiments revealed that stress-activated IPN GABAergic neurons that drive motivated sucrose seeking express somatostatin. Together, these data suggest that stress induces innate behaviors and motivates reward seeking to oppose IPN neuronal activation as an anxiolytic stress-coping mechanism.


Asunto(s)
Motivación , Animales , Ratones , Ansiedad/etiología , Neuronas GABAérgicas , Recompensa , Sacarosa
14.
Mol Pharmacol ; 81(4): 541-8, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22222765

RESUMEN

Nicotine is reinforcing because it activates dopaminergic (DAergic) neurons within the ventral tegmental area (VTA) of the brain's mesocorticolimbic reward circuitry. This increase in activity can occur for a period of several minutes up to an hour and is thought to be a critical component of nicotine dependence. However, nicotine concentrations that are routinely self-administered by smokers are predicted to desensitize high-affinity α4ß2 neuronal nicotinic acetylcholine receptors (nAChRs) in seconds. Thus, how physiologically relevant nicotine concentrations persistently activate VTA DAergic neurons is unknown. Here we show that nicotine can directly and robustly increase the firing frequency of VTA DAergic neurons for several minutes. In mouse midbrain slices, 300 nM nicotine elicited a persistent inward current in VTA DAergic neurons that was blocked by α-conotoxin MII[H9A;L15A], a selective antagonist of nAChRs containing the α6 subunit. α-conotoxin MII[H9A;L15A] also significantly reduced the long-lasting increase in DAergic neuronal activity produced by low concentrations of nicotine. In addition, nicotine failed to significantly activate VTA DAergic neurons in mice that did not express either α4 or α6 nAChR subunits. Conversely, selective activation of nAChRs containing the α4 subunit in knock-in mice expressing a hypersensitive version of these receptors yielded a biphasic response to nicotine consisting of an acute desensitizing increase in firing frequency followed by a sustained increase that lasted several minutes and was sensitive to α-conotoxin MII[H9A;L15A]. These data indicate that nicotine persistently activates VTA DAergic neurons via nAChRs containing α4 and α6 subunits.


Asunto(s)
Dopamina/metabolismo , Neuronas/efectos de los fármacos , Nicotina/farmacología , Receptores Nicotínicos/metabolismo , Área Tegmental Ventral/efectos de los fármacos , Animales , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Receptores Nicotínicos/química , Área Tegmental Ventral/citología , Área Tegmental Ventral/metabolismo
15.
Neuropsychopharmacology ; 47(3): 641-651, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34326477

RESUMEN

A critical brain area implicated in nicotine dependence is the interpeduncular nucleus (IPN) located in the ventral midbrain and consisting primarily of GABAergic neurons. Previous studies indicate that IPN GABAergic neurons contribute to expression of somatic symptoms of nicotine withdrawal; however, whether IPN neurons are dynamically regulated during withdrawal in vivo and how this may contribute to both somatic and affective withdrawal behavior is unknown. To bridge this gap in knowledge, we expressed GCaMP in IPN GABAergic neurons and used in vivo fiber photometry to record changes in fluorescence, as a proxy for neuronal activity, in male mice during nicotine withdrawal. Mecamylamine-precipitated withdrawal significantly increased activity of IPN GABAergic neurons in nicotine-dependent, but not nicotine-naive mice. Analysis of GCaMP signals time-locked with somatic symptoms including grooming and scratching revealed reduced IPN GABAergic activity during these behaviors, specifically in mice undergoing withdrawal. In the elevated plus maze, used to measure anxiety-like behavior, an affective withdrawal symptom, IPN GABAergic neuron activity was increased during open-arm versus closed-arm exploration in nicotine-withdrawn, but not non-withdrawn mice. Optogenetic silencing IPN GABAergic neurons during withdrawal significantly reduced withdrawal-induced increases in somatic behavior and increased open-arm exploration. Together, our data indicate that IPN GABAergic neurons are dynamically regulated during nicotine withdrawal, leading to increased anxiety-like symptoms and somatic behavior, which inherently decrease IPN GABAergic neuron activity as a withdrawal-coping mechanism. These results provide a neuronal basis underlying the role of the IPN in the expression of somatic and affective behaviors of nicotine withdrawal.


Asunto(s)
Núcleo Interpeduncular , Síndrome de Abstinencia a Sustancias , Animales , Neuronas GABAérgicas , Núcleo Interpeduncular/metabolismo , Masculino , Mecamilamina/farmacología , Ratones , Nicotina/farmacología , Síndrome de Abstinencia a Sustancias/metabolismo
16.
J Neurosci ; 30(30): 10169-76, 2010 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-20668200

RESUMEN

Recently, the smoking cessation therapeutic varenicline, a nicotinic acetylcholine receptor (nAChR) partial agonist, has been shown to reduce alcohol consumption. However, the mechanism and nAChR subtype(s) involved are unknown. Here we demonstrate that varenicline and alcohol exposure, either alone or in combination, selectively activates dopaminergic (DAergic) neurons within the posterior, but not the anterior, ventral tegmental area (VTA). To gain insight into which nAChR subtypes may be involved in the response to alcohol, we analyzed nAChR subunit gene expression in posterior VTA DAergic neurons. Ethanol-activated DAergic neurons expressed higher levels of alpha4, alpha6, and beta3 subunit genes compared with nonactivated neurons. To examine the role of nicotinic receptors containing the alpha4 subunit (alpha4* nAChRs) in varenicline-induced reduction of alcohol consumption, we examined the effect of the drug in two complementary mouse models, a knock-out line that does not express the alpha4 subunit (alpha4 KO) and another line that expresses alpha4* nAChRs hypersensitive to agonist (Leu9'Ala). While varenicline (0.1-0.3 mg/kg, i.p.) reduced 2% and 20% alcohol consumption in wild-type (WT) mice, the drug did not significantly reduce consumption in alpha4 KO animals. Conversely, low doses of varenicline (0.0125-0.05 mg/kg, i.p.) that had little effect in WT mice dramatically reduced ethanol intake in Leu9'Ala mice. Infusion of varenicline into the posterior, but not the anterior VTA was sufficient to reduce alcohol consumption. Together, our data indicate that activation of alpha4* nAChRs is necessary and sufficient for varenicline reduction of alcohol consumption.


Asunto(s)
Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Benzazepinas/uso terapéutico , Agonistas Nicotínicos/uso terapéutico , Quinoxalinas/uso terapéutico , Receptores Nicotínicos/metabolismo , Alanina/genética , Consumo de Bebidas Alcohólicas/genética , Consumo de Bebidas Alcohólicas/patología , Análisis de Varianza , Animales , Depresores del Sistema Nervioso Central/administración & dosificación , Modelos Animales de Enfermedad , Dopamina/metabolismo , Relación Dosis-Respuesta a Droga , Conducta de Ingestión de Líquido/efectos de los fármacos , Conducta de Ingestión de Líquido/fisiología , Combinación de Medicamentos , Etanol/administración & dosificación , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Leucina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores Nicotínicos/deficiencia , Tirosina 3-Monooxigenasa/metabolismo , Vareniclina , Área Tegmental Ventral/citología , Área Tegmental Ventral/efectos de los fármacos
17.
FASEB J ; 24(1): 49-57, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19720621

RESUMEN

Recent studies suggest that high-affinity neuronal nicotinic acetylcholine receptors (nAChRs) containing alpha4 and beta2 subunits (alpha4beta2*) functionally interact with G-protein-coupled dopamine (DA) D(2) receptors in basal ganglia. We hypothesized that if a functional interaction between these receptors exists, then mice expressing an M2 point mutation (Leu9'Ala) rendering alpha4 nAChRs hypersensitive to ACh may exhibit altered sensitivity to a D(2)-receptor agonist. When challenged with the D(2)R agonist, quinpirole (0.5-10 mg/kg), Leu9'Ala mice, but not wild-type (WT) littermates, developed severe, reversible motor impairment characterized by rigidity, catalepsy, akinesia, and tremor. While striatal DA tissue content, baseline release, and quinpirole-induced DA depletion did not differ between Leu9'Ala and WT mice, quinpirole dramatically increased activity of cholinergic striatal interneurons only in mutant animals, as measured by increased c-Fos expression in choline acetyltransferase (ChAT)-positive interneurons. Highlighting the importance of the cholinergic system in this mouse model, inhibiting the effects of ACh by blocking muscarinic receptors, or by selectively activating hypersensitive nAChRs with nicotine, rescued motor symptoms. This novel mouse model mimics the imbalance between striatal DA/ACh function associated with severe motor impairment in disorders such as Parkinson's disease, and the data suggest that a D(2)R-alpha4*-nAChR functional interaction regulates cholinergic interneuron activity.


Asunto(s)
Trastornos Parkinsonianos/etiología , Receptores de Dopamina D2/metabolismo , Receptores Nicotínicos/fisiología , Acetilcolina/fisiología , Sustitución de Aminoácidos , Animales , Catalepsia/etiología , Fibras Colinérgicas/efectos de los fármacos , Fibras Colinérgicas/fisiología , Agonistas de Dopamina/farmacología , Epilepsia Generalizada/etiología , Femenino , Interneuronas/efectos de los fármacos , Interneuronas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Rigidez Muscular/etiología , Mutagénesis Sitio-Dirigida , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/fisiopatología , Quinpirol/farmacología , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temblor/etiología
18.
Proc Natl Acad Sci U S A ; 105(45): 17543-8, 2008 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-18981408

RESUMEN

Tolerance, described as the loss of drug effectiveness over time, is an important component of addiction. The degree of acute behavioral tolerance to alcohol exhibited by a naïve subject can predict the likelihood of alcohol abuse. Thus, the determinants of acute tolerance are important to understand. Calcium- and voltage-gated (BK) potassium channels, consisting of pore forming alpha and modulatory beta subunits, are targets of ethanol (EtOH) action. Here, we examine the role, at the molecular, cellular, and behavioral levels, of the BK beta4 subunit in acute tolerance. Single channel recordings in HEK-293 cells show that, in the absence of beta4, EtOH potentiation of activity exhibits acute tolerance, which is blocked by coexpressing the beta4 subunit. BK channels in acutely isolated medium spiny neurons from WT mice (in which the beta4 subunit is well-represented) exhibit little tolerance. In contrast, neuronal BK channels from beta4 knockout (KO) mice do display acute tolerance. Brain slice recordings showed tolerance to EtOH's effects on spike patterning in KO but not in WT mice. In addition, beta4 KO mice develop rapid tolerance to EtOH's locomotor effects, whereas WT mice do not. Finally, in a restricted access ethanol self-administration assay, beta4 KO mice drink more than their WT counterparts. Taken together, these data indicate that the beta4 subunit controls ethanol tolerance at the molecular, cellular, and behavioral levels, and could determine individual differences in alcohol abuse and alcoholism, as well as represent a therapeutic target for alcoholism.


Asunto(s)
Cuerpo Estriado/metabolismo , Etanol/farmacología , Conducta Alimentaria/efectos de los fármacos , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Locomoción/efectos de los fármacos , Animales , Línea Celular , Tolerancia a Medicamentos/fisiología , Electrofisiología , Humanos , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Ratones , Ratones Noqueados
19.
Front Cell Neurosci ; 15: 742207, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867199

RESUMEN

The nucleus accumbens (NAc) is a forebrain region mediating the positive-reinforcing properties of drugs of abuse, including alcohol. It receives glutamatergic projections from multiple forebrain and limbic regions such as the prefrontal cortex (PFCx) and basolateral amygdala (BLA), respectively. However, it is unknown how NAc medium spiny neurons (MSNs) integrate PFCx and BLA inputs, and how this integration is affected by alcohol exposure. Because progress has been hampered by the inability to independently stimulate different pathways, we implemented a dual wavelength optogenetic approach to selectively and independently stimulate PFCx and BLA NAc inputs within the same brain slice. This approach functionally demonstrates that PFCx and BLA inputs synapse onto the same MSNs where they reciprocally inhibit each other pre-synaptically in a strict time-dependent manner. In alcohol-naïve mice, this temporal gating of BLA-inputs by PFCx afferents is stronger than the reverse, revealing that MSNs prioritize high-order executive processes information from the PFCx. Importantly, binge alcohol drinking alters this reciprocal inhibition by unilaterally strengthening BLA inhibition of PFCx inputs. In line with this observation, we demonstrate that in vivo optogenetic stimulation of the BLA, but not PFCx, blocks binge alcohol drinking escalation in mice. Overall, our results identify NAc MSNs as a key integrator of executive and emotional information and show that this integration is dysregulated during binge alcohol drinking.

20.
Sci Rep ; 10(1): 813, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31965003

RESUMEN

Tobacco use is the leading preventable cause of mortality in the world. The limited number of smoking cessation aids currently available are minimally effective, highlighting the need for novel therapeutic interventions. We describe a genome-wide approach to identify potential candidates for such interventions. Next-generation sequencing was performed using RNA isolated from the habenulo-interpeduncular circuit of male mice withdrawn from chronic nicotine treatment. This circuit plays a central role in the nicotine withdrawal response. Differentially expressed miRNAs and mRNAs were validated using RT-qPCR. Many of the differentially expressed mRNAs are predicted targets of reciprocally expressed miRNAs. We illustrate the utility of the dataset by demonstrating that knockdown in the interpeduncular nucleus of a differentially expressed mRNA, that encoding profilin 2, is sufficient to induce anxiety-related behavior. Importantly, profilin 2 knockdown in the ventral tegmental area did not affect anxiety behavior. Our data reveal wide-spread changes in gene expression within the habenulo-interpeduncular circuit during nicotine withdrawal. This dataset should prove to be a valuable resource leading to the identification of substrates for the design of innovative smoking cessation aids.


Asunto(s)
Habénula/fisiología , Núcleo Interpeduncular/fisiología , MicroARNs/genética , Nicotina , ARN Mensajero/genética , Síndrome de Abstinencia a Sustancias/genética , Animales , Ansiedad/genética , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Masculino , Ratones Endogámicos C57BL , Profilinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA