Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34845009

RESUMEN

Novel biophysical tools allow the structural dynamics of proteins and the regulation of such dynamics by binding partners to be explored in unprecedented detail. Although this has provided critical insights into protein function, the means by which structural dynamics direct protein evolution remain poorly understood. Here, we investigated how proteins with a bilobed structure, composed of two related domains from the periplasmic-binding protein-like II domain family, have undergone divergent evolution, leading to adaptation of their structural dynamics. We performed a structural analysis on ∼600 bilobed proteins with a common primordial structural core, which we complemented with biophysical studies to explore the structural dynamics of selected examples by single-molecule Förster resonance energy transfer and Hydrogen-Deuterium exchange mass spectrometry. We show that evolutionary modifications of the structural core, largely at its termini, enable distinct structural dynamics, allowing the diversification of these proteins into transcription factors, enzymes, and extracytoplasmic transport-related proteins. Structural embellishments of the core created interdomain interactions that stabilized structural states, reshaping the active site geometry, and ultimately altered substrate specificity. Our findings reveal an as-yet-unrecognized mechanism for the emergence of functional promiscuity during long periods of evolution and are applicable to a large number of domain architectures.


Asunto(s)
Proteínas/química , Proteínas/metabolismo , Escherichia coli/metabolismo , Evolución Molecular , Regulación de la Expresión Génica , Espectrometría de Masas , Modelos Moleculares , Filogenia , Conformación Proteica , Dominios Proteicos , Proteínas/genética
2.
EMBO J ; 37(21)2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30237313

RESUMEN

ABC transporters utilize ATP for export processes to provide cellular resistance against toxins, antibiotics, and harmful metabolites in eukaryotes and prokaryotes. Based on static structure snapshots, it is believed that they use an alternating access mechanism, which couples conformational changes to ATP binding (outward-open conformation) and hydrolysis (inward-open) for unidirectional transport driven by ATP Here, we analyzed the conformational states and dynamics of the antibacterial peptide exporter McjD from Escherichia coli using single-molecule Förster resonance energy transfer (smFRET). For the first time, we established smFRET for an ABC exporter in a native-like lipid environment and directly monitor conformational dynamics in both the transmembrane- (TMD) and nucleotide-binding domains (NBD). With this, we unravel the ligand dependences that drive conformational changes in both domains. Furthermore, we observe intrinsic conformational dynamics in the absence of ATP and ligand in the NBDs. ATP binding and hydrolysis on the other hand can be observed via NBD conformational dynamics. We believe that the progress made here in combination with future studies will facilitate full understanding of ABC transport cycles.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Adenosina Trifosfato/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Transferencia Resonante de Energía de Fluorescencia , Simulación de Dinámica Molecular , Dominios Proteicos
3.
Chembiochem ; 22(23): 3283-3291, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34296494

RESUMEN

Genetically encodable fluorescent proteins have revolutionized biological imaging in vivo and in vitro. Despite their importance, their photophysical properties, i. e., brightness, count-rate and photostability, are relatively poor compared to synthetic organic fluorophores or quantum dots. Intramolecular photostabilizers were recently rediscovered as an effective approach to improve photophysical properties of organic fluorophores. Here, direct conjugation of triplet-state quenchers or redox-active substances creates high local concentrations of photostabilizer around the fluorophore. In this paper, we screen for effects of covalently linked photostabilizers on fluorescent proteins. We produced a double cysteine mutant (A206C/L221C) of α-GFP for attachment of photostabilizer-maleimides on the ß-barrel near the chromophore. Whereas labelling with photostabilizers such as trolox, a nitrophenyl group, and cyclooctatetraene, which are often used for organic fluorophores, had no effect on α-GFP-photostability, a substantial increase of photostability was found upon conjugation to azobenzene. Although the mechanism of the photostabilizing effects remains to be elucidated, we speculate that the higher triplet-energy of azobenzene might be crucial for triplet-quenching of fluorophores in the blue spectral range. Our study paves the way for the development of fluorescent proteins with photostabilizers in the protein barrel by methods such as unnatural amino acid incorporation.


Asunto(s)
Proteínas Fluorescentes Verdes/química , Proteínas Luminiscentes/química , Fármacos Fotosensibilizantes/química , Modelos Moleculares , Procesos Fotoquímicos
4.
FEBS Lett ; 595(6): 717-734, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33314056

RESUMEN

The current model of active transport via ABC importers is mostly based on structural, biochemical and genetic data. We here establish single-molecule Förster resonance energy transfer (smFRET) assays to monitor the conformational states and heterogeneity of the osmoregulatory type I ABC importer OpuA from Lactococcus lactis. We present data probing both intradomain distances that elucidate conformational changes within the substrate-binding domain (SBD) OpuAC, and interdomain distances between SBDs or transmembrane domains. Using this methodology, we studied ligand-binding mechanisms, as well as ATP and glycine betaine dependences of conformational changes. Our work expands the scope of smFRET investigations towards a class of so far unstudied ABC importers, and paves the way for a full understanding of their transport cycle in the future.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Adenosina Trifosfatasas/química , Proteínas Bacterianas/química , Transferencia Resonante de Energía de Fluorescencia , Lactococcus lactis/química , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico Activo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Dominios Proteicos
5.
Science ; 360(6389): 635-638, 2018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29748280

RESUMEN

Stars and planets are formed inside dense interstellar molecular clouds by processes imprinted on the three-dimensional (3D) morphology of the clouds. Determining the 3D structure of interstellar clouds remains challenging because of projection effects and difficulties measuring the extent of the clouds along the line of sight. We report the detection of normal vibrational modes in the isolated interstellar cloud Musca, allowing determination of the 3D physical dimensions of the cloud. We found that Musca is vibrating globally, with the characteristic modes of a sheet viewed edge on, not the characteristics of a filament as previously supposed. We reconstructed the physical properties of Musca through 3D magnetohydrodynamic simulations, reproducing the observed normal modes and confirming a sheetlike morphology.

6.
J Plant Physiol ; 171(2): 48-51, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24331418

RESUMEN

During the last decade we showed clearly that abiotic stress changes the cellular composition of polyamines, which in turn regulate the photochemical and non-photochemical quenching of the received light energy in the photosynthetic apparatus and that modulate substantially the level of plant tolerance. In the present contribution, we tried to change the bioenergetics of the leaf discs before the exposure to osmotic stress only by exogenously supplied putrescine, in order to enhance quickly the tolerance against the abiotic stress. Tobacco leaf discs treated with polyethylene-glycol reduced their water content about 24% within 1h. This relatively mild osmotic stress increased endogenous putrescine about 83% and decreased maximum photosystem II photochemical efficiency about 14%. In line with this, here we show that treatment with 1mM exogenous putrescine 1h before polyethylene-glycol addition protects the photochemical capacity and inhibits loss of water, confirming the key role of putrescine in the modulation of plant tolerance against osmotic stress. Furthermore, our recent works indicate that putrescine is accumulated in lumen during light reactions and may act as a permeable buffer and an osmolyte.


Asunto(s)
Nicotiana/fisiología , Presión Osmótica , Putrescina/fisiología , Agua/fisiología , Adaptación Fisiológica , Clorofila/metabolismo , Polietilenglicoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA