Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Emerg Infect Dis ; 29(1): 20-25, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36573519

RESUMEN

Seoul orthohantavirus (SEOV) is not considered a major public health threat on the continent of Africa. However, Africa is exposed to rodentborne SEOV introduction events through maritime traffic after exponential growth of trade with the rest of the world. Serologic studies have already detected hantavirus antibodies in human populations, and recent investigations have confirmed circulation of hantavirus, including SEOV, in rat populations. Thus, SEOV is a possible emerging zoonotic risk in Africa. Moreover, the range of SEOV could rapidly expand, and transmission to humans could increase because of host switching from the usual brown rat (Rattus norvegicus) species, which is currently invading Africa, to the more widely installed black rat (R. rattus) species. Because of rapid economic development, environmental and climatic changes, and increased international trade, strengthened surveillance is urgently needed to prevent SEOV dissemination among humans in Africa.


Asunto(s)
Infecciones por Hantavirus , Fiebre Hemorrágica con Síndrome Renal , Orthohantavirus , Virus Seoul , Animales , Ratas , Humanos , Comercio , Seúl , Internacionalidad , Infecciones por Hantavirus/epidemiología , Infecciones por Hantavirus/veterinaria
2.
Parasitol Res ; 116(4): 1265-1271, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28210845

RESUMEN

Whipworms were collected from rodents (Muridae) from six West African countries: Burkina-Faso, the Islamic Republic of Mauritania, and the Republics of Benin, Guinea, Mali and Senegal. Molecular sequences (ITS-1, 5.8S and ITS-2 of the ribosomal DNA gene) and morphometric characters were analysed in Trichuris (Nematoda: Trichuridae) specimens found in seven host species: Arvicanthis niloticus, Gerbilliscus gambianus, Gerbillus gerbillus, G. tarabuli, Mastomys erythroleucus, M. huberti and M. natalensis. Phylogenetic analyses revealed three clades, one recognised as Trichuris mastomysi, previously recorded in M. natalensis from Tanzania, and the other two previously undescribed. A new species named Trichuris duplantieri n. sp., found in Gerbillus spp. from Mauritania, was characterised using molecular and morphometric methods.


Asunto(s)
Filogenia , Enfermedades de los Roedores/parasitología , Roedores/parasitología , Tricuriasis/veterinaria , Trichuris/genética , África Occidental/epidemiología , Animales , ADN Ribosómico , Enfermedades de los Roedores/epidemiología , Tricuriasis/epidemiología , Tricuriasis/parasitología , Trichuris/clasificación
3.
PLoS One ; 19(4): e0300523, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38598501

RESUMEN

Rodents are recognized as the main reservoirs of Leptospira spp. Rats, in particular, serve as hosts for the widely predominant Leptospira interrogans serovar Icterohaemorrhagiae, found worldwide. Several studies have shown the importance of other reservoirs, such as mice or hedgehogs, which harbor other leptospires' serovars. Nevertheless, our knowledge of circulating Leptospira spp. in reservoirs other than rats remains limited. In this context, we proposed an eco-health approach to assess the health hazard associated with leptospires in urban green spaces, where contacts between human/small mammals and domestic animals are likely. We studied the prevalence, the diversity of circulating strains, and epidemiology of pathogenic Leptospira species in small terrestrial mammal communities (rodents and shrews), between 2020-2022, in two parks in Lyon metropolis, France. Our study showed a significant carriage of Leptospira spp. in small terrestrial mammals in these parks and unveiled a global prevalence rate of 11.4%. Significant variations of prevalence were observed among the small mammal species (from 0 to 26.1%), with Rattus norvegicus exhibiting the highest infection levels (26.1%). We also observed strong spatio-temporal variations in Leptospira spp. circulation in its reservoirs. Prevalence seems to be higher in the peri-urban park and in autumn in 2021 and 2022. This is potentially due to differences in landscape, abiotic conditions and small mammal communities' composition. Our study suggests an important public health relevance of rats and in a lesser extent of other rodents (Apodemus spp., Clethrionomys glareolus and Mus musculus) as reservoirs of L. interrogans, with rodent species carrying specific serogroups/serovars. We also emphasize the potential hazard associated between the shrew Crocidura russula and L. kirschneri. Altogether, these results improve our knowledge about the prevalence of leptospirosis in an urban environment, which is an essential prerequisite for the implementation of prevention of associated risks.


Asunto(s)
Leptospira , Leptospirosis , Humanos , Ratas , Ratones , Animales , Leptospira/genética , Parques Recreativos , Prevalencia , Leptospirosis/epidemiología , Leptospirosis/veterinaria , Roedores , Musarañas , Francia , Variación Genética
4.
Mol Ecol ; 22(2): 286-300, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23206272

RESUMEN

An understanding of the evolutionary history and dynamics of invasive species is required for the construction of predictive models of future spread and the design of biological management measures. The black rat (Rattus rattus) is a major vertebrate invader with a worldwide distribution. Despite the severe ecological, economic and health impacts of this species, its evolutionary history has been little studied. We carried out extensive specimen sampling in Senegal, West Africa, and used microsatellite markers to describe the pattern and processes of invasion in this large continental area. The genetic data obtained were combined with historical knowledge concerning the presence of this species in Senegal. Data were analysed by a combination of Bayesian clustering and approximate Bayesian computation methods. The invasion pathways closely paralleled the history of human trade routes in Senegal. In several places, we detected the occurrence of multiple introductions from genetically different sources. Long-distance migration between towns and villages was also observed. Our findings suggest that genetic bottlenecks and admixture have played a major role in shaping the genetics of invasive black rats. These two processes may generate genetic novelty and favour rapid evolution along the invasion pathways.


Asunto(s)
Distribución Animal , Evolución Molecular , Genética de Población , Ratas/genética , Animales , Teorema de Bayes , Análisis por Conglomerados , Variación Genética , Especies Introducidas , Repeticiones de Microsatélite , Modelos Genéticos , Senegal
5.
Infect Dis Now ; 53(8): 104767, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37562571

RESUMEN

OBJECTIVE: A large and unprecedented outbreak of an attenuated form of hemorrhagic fever with renal syndrome called nephropathia epidemica (NE) and caused by Puumala virus (PUUV) occurred in 2021 in the southern Jura Mountains (France) leading to numerous hospitalizations. The aim of this study was to investigate the circulation of PUUV in its animal reservoir at the time of this outbreak. METHODS: We conjointly surveyed bank vole relative abundance, small mammal community composition, and PUUV circulation in bank voles (seroprevalence and genetic diversity) in the Jura NE epidemic area, between 2020 and 2022. RESULTS: Trapping results showed a higher relative abundance of bank voles in 2021 compared to 2020 and 2022. Extremely high levels of PUUV seroprevalence in bank voles were found at the time of the human NE epidemic with seropositive animals trapped in almost all trap lines as of spring 2021. Genetic analyses of PUUV (S segment) gathered in 2021 at two sampling sites revealed a strong clustering of these strains within the "Jura" clade. No significant genetic variation was detected compared to what was already known to be circulating in the Jura region. CONCLUSION: These results underline a need for enhanced monitoring of PUUV circulation in host reservoir populations in NE endemic areas. This would enable the relevant actors to better inform and sensitize the public on this zoonotic risk, and to implement prevention strategies in collaboration with physicians.


Asunto(s)
Fiebre Hemorrágica con Síndrome Renal , Virus Puumala , Animales , Humanos , Virus Puumala/genética , Fiebre Hemorrágica con Síndrome Renal/epidemiología , Fiebre Hemorrágica con Síndrome Renal/genética , Estudios Seroepidemiológicos , Brotes de Enfermedades , Arvicolinae , Francia/epidemiología
6.
Chromosome Res ; 18(5): 563-74, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20582567

RESUMEN

The African pygmy mouse, Mus minutoides, displays extensive Robertsonian (Rb) diversity. The two extremes of the karyotypic range are found in South Africa, with populations carrying 2n = 34 and 2n = 18. In order to reconstruct the scenario of chromosomal evolution of M. minutoides and test the performance of Rb fusions in resolving fine-scale phylogenetic relationships, we first describe new karyotypes, and then perform phylogenetic analyses by two independent methods, using respectively mitochondrial cytochrome b sequences and chromosomal rearrangements as markers. The molecular and chromosomal phylogenies were in perfect congruence, providing strong confidence both for the tree topology and the chronology of chromosomal rearrangements. The analysis supports a division of South African specimens into two clades showing opposite trends of chromosomal evolution, one containing all specimens with 34 chromosomes (karyotypic stasis) and the other grouping all mice with 18 chromosomes that have further diversified by the fixation of different Rb fusions (extensive karyotypic reshuffling). The results confirm that Rb fusions are by far the predominant rearrangement in M. minutoides but strongly suggest that recurrent whole-arm reciprocal translocations have also shaped this genome.


Asunto(s)
Cromosomas de los Mamíferos/genética , Cariotipificación , Ratones/genética , Mitocondrias/genética , Animales , Evolución Biológica , Aberraciones Cromosómicas , Filogenia , Translocación Genética
7.
Front Vet Sci ; 8: 740617, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34765665

RESUMEN

Previous field-based studies have evidenced patterns in gastrointestinal helminth (GIH) assemblages of rodent communities that are consistent with "enemy release" and "spill-back" hypotheses, suggesting a role of parasites in the ongoing invasion success of the exotic house mouse (Mus musculus domesticus) in Senegal (West Africa). However, these findings came from a single invasion route, thus preventing to ascertain that they did not result from stochastic and/or selective processes that could differ across invasion pathways. In the present study, we investigated the distribution of rodent communities and their GIH assemblages in three distinct zones of Northern Senegal, which corresponded to independent house mouse invasion fronts. Our findings first showed an unexpectedly rapid spread of the house mouse, which reached even remote areas where native species would have been expected to dominate the rodent communities. They also strengthened previous insights suggesting a role of helminths in the invasion success of the house mouse, such as: (i) low infestation rates of invading mice by the exotic nematode Aspiculuris tetraptera at invasion fronts-except in a single zone where the establishment of the house mouse could be older than initially thought, which was consistent with the "enemy release" hypothesis; and (ii) higher infection rates by the local cestode Mathevotaenia symmetrica in native rodents with long co-existence history with invasive mice, bringing support to the "spill-back" hypothesis. Therefore, "enemy release" and "spill-back" mechanisms should be seriously considered when explaining the invasion success of the house mouse-provided further experimental works demonstrate that involved GIHs affect rodent fitness or exert selective pressures. Next steps should also include evolutionary, immunological, and behavioral perspectives to fully capture the complexity, causes and consequences of GIH variations along these invasion routes.

8.
Pathogens ; 10(3)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809526

RESUMEN

Puumala orthohantavirus (PUUV) causes a mild form of haemorrhagic fever with renal syndrome (HFRS) called nephropathia epidemica (NE), regularly diagnosed in Europe. France represents the western frontier of the expansion of NE in Europe with two distinct areas: an endemic area (north-eastern France) where PUUV circulates in rodent populations, with the detection of many human NE cases, and a non-endemic area (south-western France) where the virus is not detected, with only a few human cases being reported. In this study, we describe the different stages of the isolation of two PUUV strains from two distinct French geographical areas: Ardennes (endemic area) and Loiret (non-endemic area). To isolate PUUV efficiently, we selected wild bank voles (Myodes glareolus, the specific reservoir of PUUV) captured in these areas and that were seronegative for anti-PUUV IgG (ELISA) but showed a non-negligible viral RNA load in their lung tissue (qRT-PCR). With this study design, we were able to cultivate and maintain these two strains in Vero E6 cells and also propagate both strains in immunologically neutral bank voles efficiently and rapidly. High-throughput and Sanger sequencing results provided a better assessment of the impact of isolation methods on viral diversity.

9.
Sci Rep ; 10(1): 18257, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-33106535

RESUMEN

Biological invasions are major anthropogenic changes associated with threats to biodiversity and health. However, what determines the successful establishment and spread of introduced populations remains unclear. Here, we explore several hypotheses linking invasion success and immune phenotype traits, including those based on the evolution of increased competitive ability concept. We compared gene expression profiles between anciently and recently established populations of two major invading species, the house mouse Mus musculus domesticus and the black rat Rattus rattus, in Senegal (West Africa). Transcriptome analyses identified differential expression between anciently and recently established populations for 364 mouse genes and 83 rat genes. All immune-related genes displaying differential expression along the mouse invasion route were overexpressed at three of the four recently invaded sites studied. Complement activation pathway genes were overrepresented among these genes. By contrast, no particular immunological process was found to be overrepresented among the differentially expressed genes of black rat. Changes in transcriptome profiles were thus observed along invasion routes, but with different specific patterns between the two invasive species. These changes may be driven by increases in infection risks at sites recently invaded by the house mouse, and by stochastic events associated with colonization history for the black rat. These results constitute a first step toward the identification of immune eco-evolutionary processes potentially involved in the invasion success of these two rodent species.


Asunto(s)
Biodiversidad , Evolución Molecular , Perfilación de la Expresión Génica , Especies Introducidas/estadística & datos numéricos , Roedores/genética , Roedores/inmunología , Análisis de Secuencia de ARN/métodos , África Occidental , Animales , Genética de Población , Ratones , Ratas , Roedores/metabolismo , Senegal
10.
Pathogens ; 9(10)2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32993044

RESUMEN

In Europe, Puumala virus (PUUV) is responsible for nephropathia epidemica (NE), a mild form of hemorrhagic fever with renal syndrome (HFRS). Despite the presence of its reservoir, the bank vole, on most of French territory, the geographic distribution of NE cases is heterogeneous and NE endemic and non-endemic areas have been reported. In this study we analyzed whether bank vole-PUUV interactions could partly shape these epidemiological differences. We performed crossed-experimental infections using wild bank voles from French endemic (Ardennes) and non-endemic (Loiret) areas and two French PUUV strains isolated from these areas. The serological response and dynamics of PUUV infection were compared between the four cross-infection combinations. Due to logistical constraints, this study was based on a small number of animals. Based on this experimental design, we saw a stronger serological response and presence of PUUV in excretory organs (bladder) in bank voles infected with the PUUV endemic strain. Moreover, the within-host viral diversity in excretory organs seemed to be higher than in other non-excretory organs for the NE endemic cross-infection but not for the NE non-endemic cross-infection. Despite the small number of rodents included, our results showed that genetically different PUUV strains and in a lesser extent their interaction with sympatric bank voles, could affect virus replication and diversity. This could impact PUUV excretion/transmission between rodents and to humans and in turn at least partly shape NE epidemiology in France.

11.
Pathogens ; 9(9)2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32882953

RESUMEN

Puumala virus (PUUV) in Europe causes nephropathia epidemica (NE), a mild form of hemorrhagic fever with renal syndrome (HFRS). The incidence of NE is highly heterogeneous spatially, whereas the geographic distribution of the wild reservoir of PUUV, the bank vole, is essentially homogeneous. Our understanding of the processes driving this heterogeneity remains incomplete due to gaps in knowledge. Little is known about the current distribution and genetic variation of PUUV in the areas outside the well-identified zones of NE endemicity. We trapped bank voles in four forests in French regions in which NE is considered non-endemic, but sporadic NE cases have been reported recently. We tested bank voles for anti-PUUV IgG and characterized the S segment sequences of PUUV from seropositive animals. Phylogenetic analyses revealed specific amino-acid signatures and genetic differences between PUUV circulating in non-endemic and nearby NE-endemic areas. We also showed, in temporal surveys, that the amino-acid sequences of PUUV had undergone fewer recent changes in areas non-endemic for NE than in endemic areas. The evolutionary history of the current French PUUV clusters was investigated by phylogeographic approaches, and the results were considered in the context of the history of French forests. Our findings highlight the need to monitor the circulation and genetics of PUUV in a larger array of bank vole populations, to improve our understanding of the risk of NE.

12.
Mol Ecol ; 17(4): 1036-53, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18261047

RESUMEN

The multimammate rat Mastomys huberti is a Sahelian species restricted to West Africa. Throughout its distribution area, the species is associated with humid habitats, flood plains and ponds, which make its current distribution highly fragmented. Knowing that humid and dry climatic phases regularly alternated along the Quaternary in West Africa, it can be postulated that the evolutionary history of the species and its genetic variation largely reflect these climatic oscillations. We used mitochondrial cytochrome b sequences to investigate the phylogenetic relationships of M. huberti populations across the totality of the species' geographical range (Mali, Senegal, Guinea and Mauritania). We found that cytochrome b sequence variation is partitioned into four divergent clades (mean Kimura 2-parameter genetic distances varying from 0.57 to 3.08%) corresponding to distinct geographical regions. We dated the separation events of these clades between 0.93 and 0.17 million years ago, suggesting that M. huberti history was strongly influenced by the Quaternary climatic variations and related hydrographic network changes. Relationships between lineages and the partitioning of genetic diversity suggest the occurrence of two refuges along the Atlantic coast during arid periods. Moreover, the species' current range results from a stepwise colonization from west to east. M. huberti colonized recently the Inner Delta of Niger River in Mali, probably during a humid episode some 0.6 million years ago. Demographically stable and highly diversified populations were found in South Senegal and Guinea while populations in North Senegal and in Mali experienced low numbers followed by a demographic expansion during the African Humid Period (c. 14 800-5500 bp). During the last arid period (c. 23 000-18 000 years ago), Malian populations found refuge in the northern parts of the Inner Delta of the Niger River, then expended to the southern parts of the delta and along the course of the Niger River downstream Tombouctou. More recently, M. huberti would have rapidly expanded into irrigated areas along the Senegal River and along the Canal du Sahel, Mali, reflecting the invasive and the pest character of this species.


Asunto(s)
Murinae/genética , Filogenia , África Occidental , Animales , Secuencia de Bases , Clima , Citocromos b/genética , Ecosistema , Variación Genética , Geografía , Haplotipos , Humedad , Reacción en Cadena de la Polimerasa , Alineación de Secuencia , Análisis de Secuencia de ADN
13.
PLoS Negl Trop Dis ; 12(6): e0006615, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29958273

RESUMEN

Bioinvasion is a major public health issue because it can lead to the introduction of pathogens in new areas and favours the emergence of zoonotic diseases. Rodents are prominent invasive species, and act as reservoirs in many zoonotic infectious diseases. The aim of this study was to determine the link between the distribution and spread of two parasite taxa (Leishmania spp. and Trypanosoma lewisi) and the progressive invasion of Senegal by two commensal rodent species (the house mouse Mus musculus domesticus and the black rat Rattus rattus). M. m. domesticus and R. rattus have invaded the northern part and the central/southern part of the country, respectively. Native and invasive rodents were caught in villages and cities along the invasion gradients of both invaders, from coastal localities towards the interior of the land. Molecular diagnosis of the two trypanosomatid infections was performed using spleen specimens. In the north, neither M. m. domesticus nor the native species were carriers of these parasites. Conversely, in the south, 17.5% of R. rattus were infected by L. major and 27.8% by T. lewisi, while very few commensal native rodents were carriers. Prevalence pattern along invasion gradients, together with the knowledge on the geographical distribution of the parasites, suggested that the presence of the two parasites in R. rattus in Senegal is of different origins. Indeed, the invader R. rattus could have been locally infected by the native parasite L. major. Conversely, it could have introduced the exotic parasite T. lewisi in Senegal, the latter appearing to be poorly transmitted to native rodents. Altogether, these data show that R. rattus is a carrier of both parasites and could be responsible for the emergence of new foci of cutaneous leishmaniasis, or for the transmission of atypical human trypanosomiasis in Senegal.


Asunto(s)
Reservorios de Enfermedades/parasitología , Leishmania major/aislamiento & purificación , Leishmaniasis Cutánea/epidemiología , Trypanosoma lewisi/aislamiento & purificación , Tripanosomiasis/epidemiología , Animales , Humanos , Especies Introducidas , Leishmania major/genética , Leishmaniasis Cutánea/parasitología , Leishmaniasis Cutánea/transmisión , Ratones , Ratas , Roedores , Senegal/epidemiología , Trypanosoma lewisi/genética , Tripanosomiasis/parasitología , Tripanosomiasis/transmisión , Zoonosis
14.
Sci Rep ; 7(1): 14995, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-29101373

RESUMEN

Changes in host-parasite ecological interactions during biological invasion events may affect both the outcome of invasions and the dynamics of exotic and/or endemic infections. We tested these hypotheses, by investigating ongoing house mouse (Mus musculus domesticus) and black rat (Rattus rattus) invasions in Senegal (West Africa). We used a 16S gene rRNA amplicon sequencing approach to study potentially zoonotic bacterial communities in invasive and native rodents sampled along two well-defined independent invasion routes. We found that individual host factors (body mass and sex) were important drivers of these bacterial infections in rodents. We observed that the bacterial communities varied along invasion routes and differed between invasive and native rodents, with native rodents displaying higher overall bacterial diversity than invasive rodents. Differences in prevalence levels for some bacterial Operational Taxonomic Units (OTUs) provided support for ecological processes connecting parasitism and invasion success. Finally, our results indicated that rodent invasions may lead to the introduction of exotic bacterial genera and/or to changes in the prevalence of endemic ones. This study illustrates the difficulty of predicting the relationship between biodiversity and disease risks, and advocate for public health prevention strategies based on global pathogen surveillance followed by accurate characterization of potential zoonotic agents.


Asunto(s)
Bacterias/aislamiento & purificación , Ratones/microbiología , Ratas/microbiología , Animales , Biodiversidad , Ecología , Especies Introducidas , Senegal
15.
Zookeys ; (566): 145-55, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27047247

RESUMEN

Methodological improvements now allow routine analyses of highly degraded DNA samples as found in museum specimens. Using these methods could be useful in studying such groups as rodents of the genus Gerbillus for which i) the taxonomy is still highly debated, ii) collection of fresh specimens may prove difficult. Here we address precise taxonomic questions using a small portion of the cytochrome b gene obtained from 45 dry skin/skull museum samples (from 1913 to 1974) originating from two African and three Asian countries. The specimens were labelled Gerbillus gerbillus, Gerbillus andersoni, Gerbillus nanus, Gerbillus amoenus, Gerbillus perpallidus and Gerbillus pyramidum, and molecular results mostly confirmed these assignations. The close relationship between Gerbillus nanus (Asian origin) and Gerbillus amoenus (African origin) confirmed that they represent vicariant sibling species which differentiated in allopatry on either side of the Red Sea. In the closely related Gerbillus perpallidus and Gerbillus pyramidum, specimens considered as belonging to one Gerbillus pyramidum subspecies (Gerbillus pyramidum floweri) appeared closer to Gerbillus perpallidus suggesting that they (Gerbillus pyramidum floweri and Gerbillus perpallidus) may represent a unique species, distributed on both sides of the Nile River, for which the correct name should be Gerbillus floweri. Furthermore, the three other Gerbillus pyramidum subspecies grouped together with no apparent genetic structure suggesting that they may not yet represent genetically differentiated lineages. This study confirms the importance of using these methods on museum samples, which can open new perspectives in this particular group as well as in other groups of interest.

16.
Int J Parasitol ; 46(13-14): 857-869, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27670366

RESUMEN

Understanding why some exotic species become widespread and abundant in their colonised range is a fundamental issue that still needs to be addressed. Among many hypotheses, newly established host populations may benefit from a parasite loss ("enemy release" hypothesis) through impoverishment of their original parasite communities or reduced infection levels. Moreover, the fitness of competing native hosts may be negatively affected by the acquisition of exotic taxa from invaders ("parasite spillover") and/or by an increased transmission risk of native parasites due to their amplification by invaders ("parasite spillback"). We focused on gastrointestinal helminth communities to determine whether these predictions could explain the ongoing invasion success of the commensal house mouse (Mus musculus domesticus) and black rat (Rattus rattus), as well as the associated decrease in native Mastomys spp., in Senegal. For both invasive species, our results were consistent with the predictions of the enemy release hypothesis. A decrease in overall gastrointestinal helminth prevalence and infracommunity species richness was observed along the invasion gradients as well as lower specific prevalence/abundance (Aspiculuris tetraptera in Mus musculus domesticus, Hymenolepis diminuta in Rattus rattus) on the invasion fronts. Conversely, we did not find strong evidence of GIH spillover or spillback in invasion fronts, where native and invasive rodents co-occurred. Further experimental research is needed to determine whether and how the loss of gastrointestinal helminths and reduced infection levels along invasion routes may result in any advantageous effects on invader fitness and competitive advantage.


Asunto(s)
Helmintiasis Animal/parasitología , Parasitosis Intestinales/veterinaria , Ratones/parasitología , Murinae/parasitología , Ratas/parasitología , Enfermedades de los Roedores/parasitología , Animales , Femenino , Tracto Gastrointestinal/parasitología , Helmintiasis Animal/epidemiología , Himenolepiasis/epidemiología , Himenolepiasis/parasitología , Himenolepiasis/veterinaria , Parasitosis Intestinales/epidemiología , Parasitosis Intestinales/parasitología , Especies Introducidas , Masculino , Oxiuriasis/epidemiología , Oxiuriasis/parasitología , Oxiuriasis/veterinaria , Prevalencia , Enfermedades de los Roedores/epidemiología , Senegal/epidemiología
17.
mSystems ; 1(4)2016.
Artículo en Inglés | MEDLINE | ID: mdl-27822541

RESUMEN

The human impact on natural habitats is increasing the complexity of human-wildlife interactions and leading to the emergence of infectious diseases worldwide. Highly successful synanthropic wildlife species, such as rodents, will undoubtedly play an increasingly important role in transmitting zoonotic diseases. We investigated the potential for recent developments in 16S rRNA amplicon sequencing to facilitate the multiplexing of the large numbers of samples needed to improve our understanding of the risk of zoonotic disease transmission posed by urban rodents in West Africa. In addition to listing pathogenic bacteria in wild populations, as in other high-throughput sequencing (HTS) studies, our approach can estimate essential parameters for studies of zoonotic risk, such as prevalence and patterns of coinfection within individual hosts. However, the estimation of these parameters requires cleaning of the raw data to mitigate the biases generated by HTS methods. We present here an extensive review of these biases and of their consequences, and we propose a comprehensive trimming strategy for managing these biases. We demonstrated the application of this strategy using 711 commensal rodents, including 208 Mus musculus domesticus, 189 Rattus rattus, 93 Mastomys natalensis, and 221 Mastomys erythroleucus, collected from 24 villages in Senegal. Seven major genera of pathogenic bacteria were detected in their spleens: Borrelia, Bartonella, Mycoplasma, Ehrlichia, Rickettsia, Streptobacillus, and Orientia. Mycoplasma, Ehrlichia, Rickettsia, Streptobacillus, and Orientia have never before been detected in West African rodents. Bacterial prevalence ranged from 0% to 90% of individuals per site, depending on the bacterial taxon, rodent species, and site considered, and 26% of rodents displayed coinfection. The 16S rRNA amplicon sequencing strategy presented here has the advantage over other molecular surveillance tools of dealing with a large spectrum of bacterial pathogens without requiring assumptions about their presence in the samples. This approach is therefore particularly suitable to continuous pathogen surveillance in the context of disease-monitoring programs. IMPORTANCE Several recent public health crises have shown that the surveillance of zoonotic agents in wildlife is important to prevent pandemic risks. High-throughput sequencing (HTS) technologies are potentially useful for this surveillance, but rigorous experimental processes are required for the use of these effective tools in such epidemiological contexts. In particular, HTS introduces biases into the raw data set that might lead to incorrect interpretations. We describe here a procedure for cleaning data before estimating reliable biological parameters, such as positivity, prevalence, and coinfection, using 16S rRNA amplicon sequencing on an Illumina MiSeq platform. This procedure, applied to 711 rodents collected in West Africa, detected several zoonotic bacterial species, including some at high prevalence, despite their never before having been reported for West Africa. In the future, this approach could be adapted for the monitoring of other microbes such as protists, fungi, and even viruses.

18.
PLoS Negl Trop Dis ; 9(10): e0004097, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26437456

RESUMEN

Leptospirosis essentially affects human following contact with rodent urine-contaminated water. As such, it was mainly found associated with rice culture, recreational activities and flooding. This is also the reason why it has mainly been investigated in temperate as well as warm and humid regions, while arid zones have been only very occasionally monitored for this disease. In particular, data for West African countries are extremely scarce. Here, we took advantage of an extensive survey of urban rodents in Niamey, Niger, in order to look for rodent-borne pathogenic Leptospira species presence and distribution across the city. To do so, we used high throughput bacterial 16S-based metabarcoding, lipL32 gene-targeting RT-PCR, rrs gene sequencing and VNTR typing as well as GIS-based multivariate spatial analysis. Our results show that leptospires seem absent from the core city where usual Leptospira reservoir rodent species (namely R. rattus and M. natalensis) are yet abundant. On the contrary, L. kirschneri was detected in Arvicanthis niloticus and Cricetomys gambianus, two rodent species that are restricted to irrigated cultures within the city. Moreover, the VNTR profiles showed that rodent-borne leptospires in Niamey belong to previously undescribed serovars. Altogether, our study points towards the importance of market gardening in maintain and circulation of leptospirosis within Sahelian cities. In Africa, irrigated urban agriculture constitutes a pivotal source of food supply, especially in the context of the ongoing extensive urbanization of the continent. With this in mind, we speculate that leptospirosis may represent a zoonotic disease of concern also in arid regions that would deserve to be more rigorously surveyed, especially in urban agricultural settings.


Asunto(s)
Jardinería , Leptospira/aislamiento & purificación , Roedores/microbiología , Animales , Reservorios de Enfermedades , Leptospira/genética , Repeticiones de Minisatélite , Niger , ARN Ribosómico 16S/genética , Zoonosis/microbiología
19.
Eur J Cell Biol ; 82(10): 523-30, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14629120

RESUMEN

Recently, we have described the developmental expression of the small heat shock proteins (sHsps) Hsp27/HspB1 and alphaB-crystallin/HspB5 in different tissues of pigs from almost full-term foetuses to three years old adults (P. Tallot, J. F. Grongnet, J. C. David, Biol. Neonate, 83, 281-288, 2003). The data described in this report extends this study to four other members of the sHsp family (Hsp20/HspB6, cvHsp/HspB7, MKBP/HspB2 and HspB8). We studied expression of these proteins in porcine lens, brain, heart, liver, kidney, lung, skeletal muscle, stomach, and colon, and found a ubiquitous expression of Hsp20 and HspB8 as earlier reported for Hsp27 and alphaB-crystallin. In contrast, cvHsp and HspB2 expression is essentially restricted to heart and muscle. During development, the sHsps tend to (temporarily) increase in stomach, liver, lung, kidney, hippocampus, and striatum, while expression in heart is more or less constant, and a large variation is found in sHsp expression patterns in skeletal muscle. In cerebellum and cortex a temporary decrease of Hsp20 and HspB8 is observed directly after birth. The major impact of this study is that each tissue seems to have a unique profile of sHsp expression, which varies during development and may reflect the need of a particular tissue to maintain at all stages an optimal chaperoning machinery to protect against physiological stress.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Porcinos , Envejecimiento/fisiología , Animales , Animales Recién Nacidos , Femenino , Proteínas de Choque Térmico/genética , Embarazo , Porcinos/anatomía & histología , Porcinos/embriología , Porcinos/crecimiento & desarrollo , Porcinos/metabolismo , Distribución Tisular
20.
PLoS Negl Trop Dis ; 8(6): e2902, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24901706

RESUMEN

BACKGROUND: Leptospirosis is the most common bacterial zoonoses and has been identified as an important emerging global public health problem in Southeast Asia. Rodents are important reservoirs for human leptospirosis, but epidemiological data is lacking. METHODOLOGY/PRINCIPAL FINDINGS: We sampled rodents living in different habitats from seven localities distributed across Southeast Asia (Thailand, Lao PDR and Cambodia), between 2009 to 2010. Human isolates were also obtained from localities close to where rodents were sampled. The prevalence of Leptospira infection was assessed by real-time PCR using DNA extracted from rodent kidneys, targeting the lipL32 gene. Sequencing rrs and secY genes, and Multi Locus Variable-number Tandem Repeat (VNTR) analyses were performed on DNA extracted from rat kidneys for Leptospira isolates molecular typing. Four species were detected in rodents, L. borgpetersenii (56% of positive samples), L. interrogans (36%), L. kirschneri (3%) and L. weilli (2%), which were identical to human isolates. Mean prevalence in rodents was approximately 7%, and largely varied across localities and habitats, but not between rodent species. The two most abundant Leptospira species displayed different habitat requirements: L. interrogans was linked to humid habitats (rice fields and forests) while L. borgpetersenii was abundant in both humid and dry habitats (non-floodable lands). CONCLUSION/SIGNIFICANCE: L. interrogans and L. borgpetersenii species are widely distributed amongst rodent populations, and strain typing confirmed rodents as reservoirs for human leptospirosis. Differences in habitat requirements for L. interrogans and L. borgpetersenii supported differential transmission modes. In Southeast Asia, human infection risk is not only restricted to activities taking place in wetlands and rice fields as is commonly accepted, but should also include tasks such as forestry work, as well as the hunting and preparation of rodents for consumption, which deserve more attention in future epidemiological studies.


Asunto(s)
Reservorios de Enfermedades , Leptospira/aislamiento & purificación , Leptospirosis/epidemiología , Leptospirosis/veterinaria , Enfermedades de los Roedores/epidemiología , Zoonosis/epidemiología , Animales , Cambodia/epidemiología , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Femenino , Genotipo , Humanos , Laos/epidemiología , Leptospira/clasificación , Leptospira/genética , Leptospirosis/microbiología , Masculino , Repeticiones de Minisatélite , Epidemiología Molecular , Datos de Secuencia Molecular , Tipificación Molecular , Prevalencia , Enfermedades de los Roedores/microbiología , Roedores , Análisis de Secuencia de ADN , Tailandia/epidemiología , Zoonosis/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA