Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
2.
Free Radic Biol Med ; 18(3): 603-9, 1995 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-9101254

RESUMEN

Reactive oxygen species (ROS) have been implicated in the pathogenesis of neuronal injury after carbon monoxide (CO) poisoning. Severe CO poisoning is treated with hyperbaric oxygen (HBO), which eliminates CO quickly from hemoglobin and body tissue stores, but has a potential to increase ROS generation. In this study, the effects of HBO on generation of highly reactive hydroxyl radical (HO.) in the brain after CO poisoning in rats was investigated using nonenzymatic hydroxylation of salicylic acid to 2,3 dihydroxybenzoic acid (2,3-DHBA) as a probe. In control studies, the concentrations of 2,3-DHBA after HBO in brain mitochondria and postmitochondrial supernatant (cytosol) were similar to air-exposed animals. After CO poisoning, 2,3-DHBA concentration increased in brain mitochondria but not in the cytosol. After CO exposure and HBO administration at 1.5 atmospheres absolute (ATA), a decrease in 2,3-DHBA production was detected in brain mitochondria. After CO and HBO at 2.5 ATA, 2,3-DHBA concentration increased in both mitochondria and cytosol. The oxidant scavenger dimethylthiourea (DMTU) and the monoamine oxidase (MAO) inhibitor pargyline, administered to CO poisoned rats after HBO at 2.5 ATA, diminished 2,3-DHBA production in both subcellular compartments. These findings indicate that brain HO. production can be either diminished or accelerated after severe CO poisoning depending on the oxygen partial pressure employed during therapy.


Asunto(s)
Encéfalo/metabolismo , Intoxicación por Monóxido de Carbono/metabolismo , Radical Hidroxilo/metabolismo , Hipoxia Encefálica/metabolismo , Animales , Intoxicación por Monóxido de Carbono/complicaciones , Intoxicación por Monóxido de Carbono/terapia , Citosol/metabolismo , Hidroxibenzoatos/metabolismo , Hidroxilación , Oxigenoterapia Hiperbárica/efectos adversos , Hipoxia Encefálica/etiología , Masculino , Mitocondrias/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Salicilatos/metabolismo , Ácido Salicílico
3.
Free Radic Biol Med ; 28(2): 251-60, 2000 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-11281292

RESUMEN

Mitochondria can initiate apoptosis by releasing cytochrome c after undergoing a calcium-dependent permeability transition (MPT). Although the MPT is enhanced by oxidative stress and prevented by adenine nucleotides such as adenosine 5'-diphosphate (ADP), the hypothesis has not been tested that oxidants regulate the effects of exogenous adenine nucleotides on the MPT and cytochrome c release. We found that cytochrome c release from intact rat liver mitochondria depended strictly on pore opening and not on membrane potential, and that MPT-enhancing oxidative stress also augmented cytochrome c release. At low oxidative stress, micromolar (ADP) and low adenosine 5'-triphosphate (ATP)/ADP ratio inhibited the MPT and cytochrome c release, whereas ATP or high ATP/ADP had only a slight effect. In freshly isolated mitochondria, the time to half-maximal MPT was related to the log of the ATP/ADP ratio. This function was shifted to shorter times by oxidative stress which decreased ADP protection and caused ATP to accelerate the calcium-dependent MPT. By comparison, mitochondria treated with reducing agents and those isolated from septic rats were protected from the MPT by both nucleotides. These results indicate that oxidation-sensitive site(s) in the membrane regulate the effects of adenine nucleotides on the MPT. The oxidant-based differences in the effects of ADP and ATP on the pore support the novel hypothesis that failure of the cell to consume ATP and provide adequate ADP at the adenine nucleotide transporter during oxidative stress predisposes to cytochrome c release and initiation of apoptosis.


Asunto(s)
Nucleótidos de Adenina/metabolismo , Membranas Intracelulares/fisiología , Mitocondrias Hepáticas/fisiología , Estrés Oxidativo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Calcio/farmacología , Calcio/fisiología , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Grupo Citocromo c/metabolismo , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Membranas Intracelulares/efectos de los fármacos , Cinética , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Mitocondrias Hepáticas/efectos de los fármacos , Consumo de Oxígeno , Ratas , Ratas Sprague-Dawley , Sepsis/fisiopatología
4.
J Appl Physiol (1985) ; 69(5): 1761-6, 1990 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-2272969

RESUMEN

O2 toxicity of the central nervous system (CNS) may be a result of enhanced generation of reactive O2 species such as superoxide and H2O2 at high PO2. In this study, we measured H2O2 production in six regions of the rat brain before and after convulsions induced by hyperbaric hyperoxia (HBO). H2O2 concentration was determined ex vivo using a method based on the H2O2-dependent decline in catalase activity in the presence of the irreversible inhibitor of compound I, 3-amino-1,2,4-triazole. Regional catalase activity in the brain ranged from 0.029 +/- 0.004 to 0.055 +/- 0.004 mumol O2.min-1.micrograms DNA-1 in cerebellum and medulla-pons, respectively. In the presence of aminotriazole, catalase activity declined after HBO-induced convulsions to 26-45% of normoxic values. The rates of inactivation of catalase were used to predict average steady-state values for H2O2 concentration in different brain structures. Estimated H2O2 concentrations during HBO varied from 31 to 51 pM in cerebellum and posterior subcortex and represented increases of 2.2-7.3 times normoxic values. These findings suggest that H2O2 is an important mediator of selective neuronal vulnerability to CNS O2 toxicity.


Asunto(s)
Encéfalo/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxigenoterapia Hiperbárica , Convulsiones/metabolismo , Amitrol (Herbicida)/farmacología , Animales , Catalasa/metabolismo , Masculino , Matemática , Concentración Osmolar , Polarografía , Ratas , Convulsiones/etiología , Distribución Tisular
5.
Free Radic Res ; 23(6): 537-47, 1995 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-8574348

RESUMEN

Peroxynitrite anion is a powerful oxidant which can initiate nitration and hydroxylation of aromatic rings. Peroxynitrite can be formed in several ways, e.g. from the reaction of nitric oxide with superoxide or from hydrogen peroxide and nitrite at acidic pH. We investigated pH dependent nitration and hydroxylation resulting from the reaction of hydrogen peroxide and nitrite to determine if this reaction proceeds at pH values which are known to occur in vivo. Nitration and hydroxylation products of tyrosine and salicyclic acid were separated with an HPLC column and measured using ultraviolet and electrochemical detectors. These studies revealed that this reaction favored hydroxylation between pH 2 and pH 4, while nitration was predominant between pH 5 and pH 6. Peroxynitrite is presumed to be an intermediate in this reaction as the hydroxylation and nitration profiles of authentic peroxynitrite showed similar pH dependence. These findings indicate that hydrogen peroxide and nitrite interact at hydrogen ion concentrations present under some physiologic conditions. This interaction can initiate nitration and hydroxylation of aromatic molecules such as tyrosine residues and may thereby contribute to the biochemical and toxic effects of the molecules.


Asunto(s)
Peróxido de Hidrógeno/química , Inflamación/metabolismo , Nitratos/química , Estrés Oxidativo/fisiología , Nitrito de Sodio/química , Tirosina/química , Concentración de Iones de Hidrógeno , Hidroxilación , Hierro/metabolismo , Salicilatos/química , Ácido Salicílico , Tirosina/análogos & derivados , Tirosina/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA