Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(12): 2705-2718.e17, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37295406

RESUMEN

Discerning the effect of pharmacological exposures on intestinal bacterial communities in cancer patients is challenging. Here, we deconvoluted the relationship between drug exposures and changes in microbial composition by developing and applying a new computational method, PARADIGM (parameters associated with dynamics of gut microbiota), to a large set of longitudinal fecal microbiome profiles with detailed medication-administration records from patients undergoing allogeneic hematopoietic cell transplantation. We observed that several non-antibiotic drugs, including laxatives, antiemetics, and opioids, are associated with increased Enterococcus relative abundance and decreased alpha diversity. Shotgun metagenomic sequencing further demonstrated subspecies competition, leading to increased dominant-strain genetic convergence during allo-HCT that is significantly associated with antibiotic exposures. We integrated drug-microbiome associations to predict clinical outcomes in two validation cohorts on the basis of drug exposures alone, suggesting that this approach can generate biologically and clinically relevant insights into how pharmacological exposures can perturb or preserve microbiota composition. The application of a computational method called PARADIGM to a large dataset of cancer patients' longitudinal fecal specimens and detailed daily medication records reveals associations between drug exposures and the intestinal microbiota that recapitulate in vitro findings and are also predictive of clinical outcomes.


Asunto(s)
Microbioma Gastrointestinal , Trasplante de Células Madre Hematopoyéticas , Microbiota , Neoplasias , Humanos , Microbioma Gastrointestinal/genética , Heces/microbiología , Metagenoma , Antibacterianos , Neoplasias/tratamiento farmacológico
2.
Cell ; 185(3): 485-492.e10, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35051367

RESUMEN

An outbreak of over 1,000 COVID-19 cases in Provincetown, Massachusetts (MA), in July 2021-the first large outbreak mostly in vaccinated individuals in the US-prompted a comprehensive public health response, motivating changes to national masking recommendations and raising questions about infection and transmission among vaccinated individuals. To address these questions, we combined viral genomic and epidemiological data from 467 individuals, including 40% of outbreak-associated cases. The Delta variant accounted for 99% of cases in this dataset; it was introduced from at least 40 sources, but 83% of cases derived from a single source, likely through transmission across multiple settings over a short time rather than a single event. Genomic and epidemiological data supported multiple transmissions of Delta from and between fully vaccinated individuals. However, despite its magnitude, the outbreak had limited onward impact in MA and the US overall, likely due to high vaccination rates and a robust public health response.


Asunto(s)
COVID-19/epidemiología , COVID-19/inmunología , COVID-19/transmisión , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/virología , Niño , Preescolar , Trazado de Contacto/métodos , Brotes de Enfermedades , Femenino , Genoma Viral , Humanos , Lactante , Recién Nacido , Masculino , Massachusetts/epidemiología , Persona de Mediana Edad , Epidemiología Molecular , Filogenia , SARS-CoV-2/clasificación , Vacunación , Secuenciación Completa del Genoma , Adulto Joven
3.
Cell ; 184(10): 2532-2534, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33989546

RESUMEN

In this issue of Cell, Washington et al. and Alpert et al. demonstrate the value of genomic surveillance when studying the introduction of the B.1.1.7 variant to the US and illustrate the challenge that results from the lack of good sampling strategies.


Asunto(s)
COVID-19/epidemiología , Enfermedades Transmisibles Emergentes/epidemiología , Monitoreo Epidemiológico , Metagenómica/métodos , SARS-CoV-2/aislamiento & purificación , COVID-19/virología , Enfermedades Transmisibles Emergentes/virología , Humanos , SARS-CoV-2/genética , Estados Unidos/epidemiología
4.
Cell ; 184(26): 6229-6242.e18, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34910927

RESUMEN

SARS-CoV-2 variants of concern exhibit varying degrees of transmissibility and, in some cases, escape from acquired immunity. Much effort has been devoted to measuring these phenotypes, but understanding their impact on the course of the pandemic-especially that of immune escape-has remained a challenge. Here, we use a mathematical model to simulate the dynamics of wild-type and variant strains of SARS-CoV-2 in the context of vaccine rollout and nonpharmaceutical interventions. We show that variants with enhanced transmissibility frequently increase epidemic severity, whereas those with partial immune escape either fail to spread widely or primarily cause reinfections and breakthrough infections. However, when these phenotypes are combined, a variant can continue spreading even as immunity builds up in the population, limiting the impact of vaccination and exacerbating the epidemic. These findings help explain the trajectories of past and present SARS-CoV-2 variants and may inform variant assessment and response in the future.


Asunto(s)
COVID-19/inmunología , COVID-19/transmisión , Evasión Inmune , SARS-CoV-2/inmunología , COVID-19/epidemiología , COVID-19/virología , Simulación por Computador , Humanos , Inmunidad , Modelos Biológicos , Reinfección , Vacunación
5.
Nature ; 588(7837): 303-307, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33239790

RESUMEN

The gut microbiota influences development1-3 and homeostasis4-7 of the mammalian immune system, and is associated with human inflammatory8 and immune diseases9,10 as well as responses to immunotherapy11-14. Nevertheless, our understanding of how gut bacteria modulate the immune system remains limited, particularly in humans, where the difficulty of direct experimentation makes inference challenging. Here we study hundreds of hospitalized-and closely monitored-patients with cancer receiving haematopoietic cell transplantation as they recover from chemotherapy and stem-cell engraftment. This aggressive treatment causes large shifts in both circulatory immune cell and microbiota populations, enabling the relationships between the two to be studied simultaneously. Analysis of observed daily changes in circulating neutrophil, lymphocyte and monocyte counts and more than 10,000 longitudinal microbiota samples revealed consistent associations between gut bacteria and immune cell dynamics. High-resolution clinical metadata and Bayesian inference allowed us to compare the effects of bacterial genera in relation to those of immunomodulatory medications, revealing a considerable influence of the gut microbiota-together and over time-on systemic immune cell dynamics. Our analysis establishes and quantifies the link between the gut microbiota and the human immune system, with implications for microbiota-driven modulation of immunity.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Leucocitos/citología , Leucocitos/inmunología , Factores de Edad , Teorema de Bayes , Trasplante de Microbiota Fecal , Femenino , Humanos , Recuento de Leucocitos , Linfocitos/citología , Linfocitos/inmunología , Monocitos/citología , Monocitos/inmunología , Neutrófilos/citología , Neutrófilos/inmunología , Reproducibilidad de los Resultados
6.
Clin Infect Dis ; 76(3): e400-e408, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35616119

RESUMEN

BACKGROUND: The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly transmissible in vaccinated and unvaccinated populations. The dynamics that govern its establishment and propensity toward fixation (reaching 100% frequency in the SARS-CoV-2 population) in communities remain unknown. Here, we describe the dynamics of Omicron at 3 institutions of higher education (IHEs) in the greater Boston area. METHODS: We use diagnostic and variant-specifying molecular assays and epidemiological analytical approaches to describe the rapid dominance of Omicron following its introduction into 3 IHEs with asymptomatic surveillance programs. RESULTS: We show that the establishment of Omicron at IHEs precedes that of the state and region and that the time to fixation is shorter at IHEs (9.5-12.5 days) than in the state (14.8 days) or region. We show that the trajectory of Omicron fixation among university employees resembles that of students, with a 2- to 3-day delay. Finally, we compare cycle threshold values in Omicron vs Delta variant cases on college campuses and identify lower viral loads among college affiliates who harbor Omicron infections. CONCLUSIONS: We document the rapid takeover of the Omicron variant at IHEs, reaching near-fixation within the span of 9.5-12.5 days despite lower viral loads, on average, than the previously dominant Delta variant. These findings highlight the transmissibility of Omicron, its propensity to rapidly dominate small populations, and the ability of robust asymptomatic surveillance programs to offer early insights into the dynamics of pathogen arrival and spread.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2/genética , Universidades , Boston
7.
J Infect Dis ; 226(10): 1704-1711, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-35993116

RESUMEN

BACKGROUND: Throughout the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, healthcare workers (HCWs) have faced risk of infection from within the workplace via patients and staff as well as from the outside community, complicating our ability to resolve transmission chains in order to inform hospital infection control policy. Here we show how the incorporation of sequences from public genomic databases aided genomic surveillance early in the pandemic when circulating viral diversity was limited. METHODS: We sequenced a subset of discarded, diagnostic SARS-CoV-2 isolates between March and May 2020 from Boston Medical Center HCWs and combined this data set with publicly available sequences from the surrounding community deposited in GISAID with the goal of inferring specific transmission routes. RESULTS: Contextualizing our data with publicly available sequences reveals that 73% (95% confidence interval, 63%-84%) of coronavirus disease 2019 cases in HCWs are likely novel introductions rather than nosocomial spread. CONCLUSIONS: We argue that introductions of SARS-CoV-2 into the hospital environment are frequent and that expanding public genomic surveillance can better aid infection control when determining routes of transmission.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias/prevención & control , COVID-19/epidemiología , Control de Infecciones , Personal de Salud , Hospitales
8.
Blood ; 136(1): 130-136, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32430495

RESUMEN

Studies of the relationship between the gastrointestinal microbiota and outcomes in allogeneic hematopoietic stem cell transplantation (allo-HCT) have thus far largely focused on early complications, predominantly infection and acute graft-versus-host disease (GVHD). We examined the potential relationship of the microbiome with chronic GVHD (cGVHD) by analyzing stool and plasma samples collected late after allo-HCT using a case-control study design. We found lower circulating concentrations of the microbe-derived short-chain fatty acids (SCFAs) propionate and butyrate in day 100 plasma samples from patients who developed cGVHD, compared with those who remained free of this complication, in the initial case-control cohort of transplant patients and in a further cross-sectional cohort from an independent transplant center. An additional cross-sectional patient cohort from a third transplant center was analyzed; however, serum (rather than plasma) was available, and the differences in SCFAs observed in the plasma samples were not recapitulated. In sum, our findings from the primary case-control cohort and 1 of 2 cross-sectional cohorts explored suggest that the gastrointestinal microbiome may exert immunomodulatory effects in allo-HCT patients at least in part due to control of systemic concentrations of microbe-derived SCFAs.


Asunto(s)
Butiratos/sangre , Microbioma Gastrointestinal , Enfermedad Injerto contra Huésped/microbiología , Propionatos/sangre , Adulto , Aloinjertos , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Estudios de Casos y Controles , Enfermedad Crónica , Disbiosis/etiología , Disbiosis/microbiología , Heces/microbiología , Enfermedad Injerto contra Huésped/sangre , Enfermedad Injerto contra Huésped/etiología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Metaboloma , Ribotipificación
9.
Infect Immun ; 87(7)2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31010813

RESUMEN

Vancomycin-resistant Enterococcus faecium (VRE) is a leading cause of hospital-acquired infections. This is particularly true in immunocompromised patients, where the damage to the microbiota caused by antibiotics can lead to VRE domination of the intestine, increasing a patient's risk for bloodstream infection. In previous studies we observed that the intestinal domination by VRE of patients hospitalized to receive allogeneic bone marrow transplantation can persist for weeks, but little is known about subspecies diversification and evolution during prolonged domination. Here we combined a longitudinal analysis of patient data and in vivo experiments to reveal previously unappreciated subspecies dynamics during VRE domination that appeared to be stable from 16S rRNA microbiota analyses. Whole-genome sequencing of isolates obtained from sequential stool samples provided by VRE-dominated patients revealed an unanticipated level of VRE population complexity that evolved over time. In experiments with ampicillin-treated mice colonized with a single CFU, VRE rapidly diversified and expanded into distinct lineages that competed for dominance. Mathematical modeling shows that in vivo evolution follows mostly a parabolic fitness landscape, where each new mutation provides diminishing returns and, in the setting of continuous ampicillin treatment, reveals a fitness advantage for mutations in penicillin-binding protein 5 (pbp5) that increase resistance to ampicillin. Our results reveal the rapid diversification of host-colonizing VRE populations, with implications for epidemiologic tracking of in-hospital VRE transmission and susceptibility to antibiotic treatment.


Asunto(s)
ADN Bacteriano/genética , Enterococcus faecium/genética , Variación Genética , Infecciones por Bacterias Grampositivas/microbiología , Enterococos Resistentes a la Vancomicina/genética , Animales , Evolución Biológica , Análisis Mutacional de ADN , Heces/microbiología , Humanos , Estudios Longitudinales , ARN Ribosómico 16S/genética
10.
Infect Immun ; 87(9)2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31262981

RESUMEN

Dramatic microbiota changes and loss of commensal anaerobic bacteria are associated with adverse outcomes in hematopoietic cell transplantation (HCT) recipients. In this study, we demonstrate these dynamic changes at high resolution through daily stool sampling and assess the impact of individual antibiotics on those changes. We collected 272 longitudinal stool samples (with mostly daily frequency) from 18 patients undergoing HCT and determined their composition by multiparallel 16S rRNA gene sequencing as well as the density of bacteria in stool by quantitative PCR (qPCR). We calculated microbiota volatility to quantify rapid shifts and developed a new dynamic systems inference method to assess the specific impact of antibiotics. The greatest shifts in microbiota composition occurred between stem cell infusion and reconstitution of healthy immune cells. Piperacillin-tazobactam caused the most severe declines among obligate anaerobes. Our approach of daily sampling, bacterial density determination, and dynamic systems modeling allowed us to infer the independent effects of specific antibiotics on the microbiota of HCT patients.


Asunto(s)
Antibacterianos/farmacología , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Trasplante de Células Madre Hematopoyéticas , Microbiota/efectos de los fármacos , Adulto , Anciano , Bacterias/genética , Femenino , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Masculino , Persona de Mediana Edad , ARN Ribosómico 16S
11.
Phys Biol ; 13(6): 066014, 2017 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-28112103

RESUMEN

Multiple virus particles can infect a target host cell. Such multiple infections (MIs) have significant and varied ecological and evolutionary consequences for both virus and host populations. Yet, the in situ rates and drivers of MIs in virus-microbe systems remain largely unknown. Here, we develop an individual-based model (IBM) of virus-microbe dynamics to probe how spatial interactions drive the frequency and nature of MIs. In our IBMs, we identify increasingly spatially correlated clusters of viruses given sufficient decreases in viral movement. We also identify increasingly spatially correlated clusters of viruses and clusters of hosts given sufficient increases in viral infectivity. The emergence of clusters is associated with an increase in multiply infected hosts as compared to expectations from an analogous mean field model. We also observe long-tails in the distribution of the multiplicity of infection in contrast to mean field expectations that such events are exponentially rare. We show that increases in both the frequency and severity of MIs occur when viruses invade a cluster of uninfected microbes. We contend that population-scale enhancement of MI arises from an aggregate of invasion dynamics over a distribution of microbe cluster sizes. Our work highlights the need to consider spatially explicit interactions as a potentially key driver underlying the ecology and evolution of virus-microbe communities.


Asunto(s)
Bacterias/virología , Bacteriófagos/fisiología , Interacciones Microbianas , Fenómenos Fisiológicos Bacterianos , Evolución Biológica , Cinética , Simulación de Dinámica Molecular , Análisis Espacial
12.
J Theor Biol ; 408: 145-154, 2016 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-27524644

RESUMEN

Dynamic models - often deterministic in nature - were used to estimate the basic reproductive number, R0, of the 2014-5 Ebola virus disease (EVD) epidemic outbreak in West Africa. Estimates of R0 were then used to project the likelihood for large outbreak sizes, e.g., exceeding hundreds of thousands of cases. Yet fitting deterministic models can lead to over-confidence in the confidence intervals of the fitted R0, and, in turn, the type and scope of necessary interventions. In this manuscript we propose a hybrid stochastic-deterministic method to estimate R0 and associated confidence intervals (CIs). The core idea is that stochastic realizations of an underlying deterministic model can be used to evaluate the compatibility of candidate values of R0 with observed epidemic curves. The compatibility is based on comparing the distribution of expected epidemic growth rates with the observed epidemic growth rate given "process noise", i.e., arising due to stochastic transmission, recovery and death events. By applying our method to reported EVD case counts from Guinea, Liberia and Sierra Leone, we show that prior estimates of R0 based on deterministic fits appear to be more confident than analysis of stochastic trajectories suggests should be possible. Moving forward, we recommend including process noise among other sources of noise when estimating R0 CIs of emerging epidemics. Our hybrid procedure represents an adaptable and easy-to-implement approach for such estimation.


Asunto(s)
Enfermedades Transmisibles Emergentes/epidemiología , Fiebre Hemorrágica Ebola/epidemiología , Modelos Teóricos , Procesos Estocásticos , África Occidental , Enfermedades Transmisibles Emergentes/transmisión , Intervalos de Confianza , Epidemias , Fiebre Hemorrágica Ebola/transmisión , Replicación Viral
13.
J Theor Biol ; 354: 124-36, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-24662503

RESUMEN

Virophages are viruses that rely on the replication machinery of other viruses to reproduce within eukaryotic hosts. Two different modes of coinfection have been posited based on experimental observation. In one mode, the virophage and the virus enter the host independently. In the other mode, the virophage adheres to the virus so both virophage and virus enter the host together. Here we ask: what are the ecological effects of these different modes of coinfection? In particular, what ecological effects are common to both infection modes, and what are the differences particular to each mode? We develop a pair of biophysically motivated ODE models of viral-host population dynamics, corresponding to dynamics arising from each mode of infection. We find that both modes of coinfection allow for the coexistence of the virophage, virus, and host either at a stable fixed point or through cyclical dynamics. In both models, virophage tends to be the most abundant population and their presence always reduces the viral abundance and increases the host abundance. However, we do find qualitative differences between models. For example, via extensive sampling of biologically relevant parameter space, we only observe bistability when the virophage and the virus enter the host together. We discuss how such differences may be leveraged to help identify modes of infection in natural environments from population level data.


Asunto(s)
Coinfección , Ecosistema , Interacciones Huésped-Patógeno , Modelos Biológicos , Virosis , Fenómenos Fisiológicos de los Virus , Virus
14.
Heliyon ; 10(1): e23699, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38223743

RESUMEN

Background: Immunocompromised patients receiving B-cell-depleting therapies are at increased risk of persistent SARS-CoV-2 infection, with many experiencing fatal outcomes. We report a successful outcome in a patient with rheumatoid arthritis (RA) on rituximab diagnosed with COVID-19 in July 2020 with persistent infection for over 245 days. Results: The patient received numerous treatment courses for persistent COVID-19 infection, including remdesivir, baricitinib, immunoglobulin and high doses of corticosteroids followed by a prolonged taper due to persistent respiratory symptoms and cryptogenic organizing pneumonia. Her clinical course was complicated by Pseudomonas aeruginosa sinusitis with secondary bacteremia, and cytomegalovirus (CMV) viremia and pneumonitis. SARS-CoV-2 positive RNA samples were extracted from two nasopharyngeal swabs and sequenced using targeted amplicon Next-Generation Sequencing which were analyzed for virus evolution over time. Viral sequencing indicated lineage B.1.585.3 SARS-CoV-2 accumulated Spike protein mutations associated with immune evasion and resistance to therapeutics. Upon slowly decreasing the patient's steroids, she had resolution of her symptoms and had a negative nasopharyngeal SARS-CoV-2 PCR and serum CMV PCR in March 2021. Conclusion: A patient with RA on B-cell depleting therapy developed persistent SARS-CoV-2 infection allowing for virus evolution and had numerous complications, including viral and bacterial co-infections with opportunistic pathogens. Despite intra-host evolution with a more immune evasive SARS-CoV-2 lineage, it was cleared after 245 days with reconstitution of the patient's immune system.

15.
Infect Control Hosp Epidemiol ; 45(3): 284-291, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38149351

RESUMEN

OBJECTIVE: We studied the extent of carbapenemase-producing Enterobacteriaceae (CPE) sink contamination and transmission to patients in a nonoutbreak setting. METHODS: During 2017-2019, 592 patient-room sinks were sampled in 34 departments. Patient weekly rectal swab CPE surveillance was universally performed. Repeated sink sampling was conducted in 9 departments. Isolates from patients and sinks were characterized using pulsed-field gel electrophoresis (PFGE), and pairs of high resemblance were sequenced by Oxford Nanopore and Illumina. Hybrid assembly was used to fully assemble plasmids, which are shared between paired isolates. RESULTS: In total, 144 (24%) of 592 CPE-contaminated sinks were detected in 25 of 34 departments. Repeated sampling (n = 7,123) revealed that 52%-100% were contaminated at least once during the sampling period. Persistent contamination for >1 year by a dominant strain was common. During the study period, 318 patients acquired CPE. The most common species were Klebsiella pneumoniae, Escherichia coli, and Enterobacter spp. In 127 (40%) patients, a contaminated sink was the suspected source of CPE acquisition. For 20 cases with an identical sink-patient strain, temporal relation suggested sink-to-patient transmission. Hybrid assembly of specific sink-patient isolates revealed that shared plasmids were structurally identical, and SNP differences between shared pairs, along with signatures for potential recombination events, suggests recent sharing of the plasmids. CONCLUSIONS: CPE-contaminated sinks are an important source of transmission to patients. Although traditionally person-to-person transmission has been considered the main route of CPE transmission, these data suggest a change in paradigm that may influence strategies of preventing CPE dissemination.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos , Infecciones por Enterobacteriaceae , Humanos , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Enterobacteriaceae , beta-Lactamasas/genética , Proteínas Bacterianas/genética , Klebsiella pneumoniae/genética , Escherichia coli , Infecciones por Enterobacteriaceae/epidemiología
16.
Nat Commun ; 14(1): 6397, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907520

RESUMEN

Identifying and interrupting transmission chains is important for controlling infectious diseases. One way to identify transmission pairs - two hosts in which infection was transmitted from one to the other - is using the variation of the pathogen within each single host (within-host variation). However, the role of such variation in transmission is understudied due to a lack of experimental and clinical datasets that capture pathogen diversity in both donor and recipient hosts. In this work, we assess the utility of deep-sequenced genomic surveillance (where genomic regions are sequenced hundreds to thousands of times) using a mouse transmission model involving controlled spread of the pathogenic bacterium Citrobacter rodentium from infected to naïve female animals. We observe that within-host single nucleotide variants (iSNVs) are maintained over multiple transmission steps and present a model for inferring the likelihood that a given pair of sequenced samples are linked by transmission. In this work we show that, beyond the presence and absence of within-host variants, differences arising in the relative abundance of iSNVs (allelic frequency) can infer transmission pairs more precisely. Our approach further highlights the critical role bottlenecks play in reserving the within-host diversity during transmission.


Asunto(s)
Variación Genética , Genómica , Animales , Femenino , Frecuencia de los Genes , Bacterias , Secuenciación de Nucleótidos de Alto Rendimiento
17.
Cell Host Microbe ; 31(7): 1126-1139.e6, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37329880

RESUMEN

Longitudinal microbiome data provide valuable insight into disease states and clinical responses, but they are challenging to mine and view collectively. To address these limitations, we present TaxUMAP, a taxonomically informed visualization for displaying microbiome states in large clinical microbiome datasets. We used TaxUMAP to chart a microbiome atlas of 1,870 patients with cancer during therapy-induced perturbations. Bacterial density and diversity were positively associated, but the trend was reversed in liquid stool. Low-diversity states (dominations) remained stable after antibiotic treatment, and diverse communities had a broader range of antimicrobial resistance genes than dominations. When examining microbiome states associated with risk for bacteremia, TaxUMAP revealed that certain Klebsiella species were associated with lower risk for bacteremia localize in a region of the atlas that is depleted in high-risk enterobacteria. This indicated a competitive interaction that was validated experimentally. Thus, TaxUMAP can chart comprehensive longitudinal microbiome datasets, enabling insights into microbiome effects on human health.


Asunto(s)
Bacteriemia , Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias/genética
18.
Mol Cancer Ther ; 21(5): 831-843, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35247928

RESUMEN

Therapeutic resistance is a fundamental obstacle in cancer treatment. Tumors that initially respond to treatment may have a preexisting resistant subclone or acquire resistance during treatment, making relapse theoretically inevitable. Here, we investigate treatment strategies that may delay relapse using mathematical modeling. We find that for a single-drug therapy, pulse treatment-short, elevated doses followed by a complete break from treatment-delays relapse compared with continuous treatment with the same total dose over a length of time. For tumors treated with more than one drug, continuous combination treatment is only sometimes better than sequential treatment, while pulsed combination treatment or simply alternating between the two therapies at defined intervals delays relapse the longest. These results are independent of the fitness cost or benefit of resistance, and are robust to noise. Machine-learning analysis of simulations shows that the initial tumor response and heterogeneity at the start of treatment suffice to determine the benefit of pulsed or alternating treatment strategies over continuous treatment. Analysis of eight tumor burden trajectories of breast cancer patients treated at Memorial Sloan Kettering Cancer Center shows the model can predict time to resistance using initial responses to treatment and estimated preexisting resistant populations. The model calculated that pulse treatment would delay relapse in all eight cases. Overall, our results support that pulsed treatments optimized by mathematical models could delay therapeutic resistance.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Humanos , Recurrencia , Carga Tumoral
19.
Nat Commun ; 13(1): 721, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35132084

RESUMEN

Much of our understanding of bacterial behavior stems from studies in liquid culture. In nature, however, bacteria frequently live in densely packed spatially-structured communities. How does spatial structure affect bacterial cooperative behaviors? In this work, we examine rhamnolipid production-a cooperative and virulent behavior of Pseudomonas aeruginosa. Here we show that, in striking contrast to well-mixed liquid culture, rhamnolipid gene expression in spatially-structured colonies is strongly associated with colony specific growth rate, and is impacted by perturbation with diffusible quorum signals. To interpret these findings, we construct a data-driven statistical inference model which captures a length-scale of bacterial interaction that develops over time. Finally, we find that perturbation of P. aeruginosa swarms with quorum signals preserves the cooperating genotype in competition, rather than creating opportunities for cheaters. Overall, our data demonstrate that the complex response to spatial localization is key to preserving bacterial cooperative behaviors.


Asunto(s)
Interacciones Microbianas/fisiología , Modelos Biológicos , Proteínas Bacterianas/genética , Biomasa , Recuento de Colonia Microbiana , Regulación Bacteriana de la Expresión Génica , Glucolípidos/genética , Glucolípidos/metabolismo , Locomoción , Interacciones Microbianas/genética , Mutación , Imagen Óptica , Regiones Promotoras Genéticas , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/fisiología , Percepción de Quorum , Análisis Espacio-Temporal
20.
Sci Data ; 9(1): 219, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35585088

RESUMEN

Hospitalized patients receiving hematopoietic cell transplants provide a unique opportunity to study the human gut microbiome. We previously compiled a large-scale longitudinal dataset of fecal microbiota and associated metadata, but we had limited that analysis to taxonomic composition of bacteria from 16S rRNA gene sequencing. Here we augment those data with shotgun metagenomics. The compilation amounts to a nested subset of 395 samples compiled from different studies at Memorial Sloan Kettering. Shotgun metagenomics describes the microbiome at the functional level, particularly in antimicrobial resistances and virulence factors. We provide accession numbers that link each sample to the paired-end sequencing files deposited in a public repository, which can be directly accessed by the online services of PATRIC to be analyzed without the users having to download or transfer the files. Then, we show how shotgun sequencing enables the assembly of genomes from metagenomic data. The new data, combined with the metadata published previously, enables new functional studies of the microbiomes of patients with cancer receiving bone marrow transplantation.


Asunto(s)
Heces , Trasplante de Células Madre Hematopoyéticas , Microbiota , Heces/microbiología , Humanos , Metagenómica , Microbiota/genética , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA