Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Pineal Res ; 76(5): e12965, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38860494

RESUMEN

Melatonin is a pineal hormone that modulates the circadian system and exerts soporific and phase-shifting effects. It is also involved in many other physiological processes, such as those implicated in cardiovascular, endocrine, immune, and metabolic functions. However, the role of melatonin in glucose metabolism remains contradictory, and its action on human adipose tissue (AT) explants has not been demonstrated. We aimed to assess whether melatonin (a pharmacological dose) influences insulin sensitivity in human AT. This will help better understand melatonin administration's effect on glucose metabolism. Abdominal AT (subcutaneous and visceral) biopsies were obtained from 19 participants with severe obesity (age: 42.84 ± 12.48 years; body mass index: 43.14 ± 8.26 kg/m2) who underwent a laparoscopic gastric bypass. AT biopsies were exposed to four different treatments: control (C), insulin alone (I) (10 nM), melatonin alone (M) (5000 pg/mL), and insulin plus melatonin combined (I + M). All four conditions were repeated in both subcutaneous and visceral AT, and all were performed in the morning at 8 a.m. (n = 19) and the evening at 8 p.m. (in a subsample of n = 12). We used western blot analysis to determine insulin signaling (using the pAKT/tAKT ratio). Furthermore, RNAseq analyses were performed to better understand the metabolic pathways involved in the effect of melatonin on insulin signaling. As expected, insulin treatment (I) increased the pAKT/tAKT ratio compared with control (p < .0001). Furthermore, the addition of melatonin (I + M) resulted in a decrease in insulin signaling as compared with insulin alone (I); this effect was significant only during the evening time (not in the morning time). Further, RNAseq analyses in visceral AT during the evening condition (at 8 p.m.) showed that melatonin resulted in a prompt transcriptome response (around 1 h after melatonin addition), particularly by downregulating the insulin signaling pathway. Our results show that melatonin reduces insulin sensitivity in human AT during the evening. These results may partly explain the previous studies showing a decrease in glucose tolerance after oral melatonin administration in the evening or when eating late when endogenous melatonin is present.


Asunto(s)
Resistencia a la Insulina , Melatonina , Humanos , Melatonina/farmacología , Resistencia a la Insulina/fisiología , Adulto , Masculino , Femenino , Persona de Mediana Edad , Insulina/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/efectos de los fármacos
2.
J Pineal Res ; 67(2): e12580, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30968433

RESUMEN

Recent studies have highlighted the involvement of melatonin in the regulation of energy homeostasis. In this study, we report that mice lacking melatonin receptor 1 (MT1 KO) gained more weight, had a higher cumulative food intake, and were more hyperphagic after fasting compared to controls (WT). In response to a leptin injection, MT1 KO mice showed a diminished reduction in body weight and food intake. To evaluate hypothalamic leptin signaling, we tested leptin-induced phosphorylation of the signal transducer and activator of transcription 3 (STAT3). Leptin failed to induce STAT3 phosphorylation in MT1 KO mice beyond levels observed in mice injected with phosphate-buffered saline (PBS). Furthermore, STAT3 phosphorylation within the arcuate nucleus (ARH) was decreased in MT1 KO mice. Leptin receptor mRNA levels in the hypothalamus of MT1 KO were significantly reduced (about 50%) compared to WT. This study shows that: (a) MT1 deficiency causes weight gain and increased food intake; (b) a lack of MT1 signaling induces leptin resistance; (c) leptin resistance is ARH region-specific; and (d) leptin resistance is likely due to down-regulation of the leptin receptor. Our data demonstrate that MT1 signaling is an important modulator of leptin signaling.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Leptina/metabolismo , Receptor de Melatonina MT1/deficiencia , Transducción de Señal , Animales , Eliminación de Gen , Leptina/genética , Masculino , Ratones , Ratones Noqueados , Receptor de Melatonina MT1/metabolismo
3.
J Pineal Res ; 64(3)2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29247541

RESUMEN

Recent genetic studies have highlighted the potential involvement of melatonin receptor 1 (MT1 ) and melatonin receptor 2 (MT2 ) in the pathogenesis of type 2 diabetes. Here, we report that mice lacking MT1 (MT1 KO) tend to accumulate more fat mass than WT mice and exhibit marked systemic insulin resistance. Additional experiments revealed that the main insulin signaling pathway affected by the loss of MT1 was the activation of phosphatidylinositol-3-kinase (PI3K). Transcripts of both catalytic and regulatory subunits of PI3K were strongly downregulated within MT1 KO mice. Moreover, the suppression of nocturnal melatonin levels within WT mice, by exposing mice to constant light, resulted in impaired PI3K activity and insulin resistance during the day, similar to what was observed in MT1 KO mice. Inversely, administration of melatonin to WT mice exposed to constant light was sufficient and necessary to restore insulin-mediated PI3K activity and insulin sensitivity. Hence, our data demonstrate that the activation of MT1 signaling at night modulates insulin sensitivity during the day via the regulation of the PI3K transcription and activity. Lastly, we provide evidence that decreased expression of MTNR1A (MT1 ) in the liver of diabetic individuals is associated with poorly controlled diabetes.


Asunto(s)
Ritmo Circadiano/fisiología , Resistencia a la Insulina/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor de Melatonina MT1/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados
4.
Endocrinol Diabetes Metab ; 4(1): e00171, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33532613

RESUMEN

Background: Melatonin is a hormone secreted by the pineal gland in a circadian rhythmic manner with peak synthesis at night. Melatonin signalling was suggested to play a critical role in metabolism during the circadian disruption. Methods: Melatonin-proficient (C3H-f+/+ or WT) and melatonin receptor type 1 knockout (MT1 KO) male and female mice were phase-advanced (6 hours) once a week for 6 weeks. Every week, we measured weight, food intake and basal glucose levels. At the end of the experiment, we sacrificed the animals and measured the blood's plasma for lipids profile (total lipids, phospholipids, triglycerides and total cholesterol), metabolic hormones profiles (ghrelin, leptin, insulin, glucagon, glucagon-like-peptide and resistin) and the body composition. Results: Environmental circadian disruption (ECD) did not produce any significant effects in C3H-f+/+, while it increased lipids profile in MT1 KO with the significant increase observed in total lipids and triglycerides. For metabolic hormones profile, ECD decreased plasma ghrelin and increased plasma insulin in MT1 KO females. Under control condition, MT1 KO females have significantly different body weight, fat mass, total lipids and total cholesterol than the control C3H-f+/+ females. Conclusion: Our data show that melatonin-proficient mice are not affected by ECD. When the MT1 receptors are removed, ECD induced dyslipidaemia in males and females with females experiencing the most adverse effect. Overall, our data demonstrate that MT1 signalling is an essential modulator of lipid and metabolic homeostasis during ECD.


Asunto(s)
Trastornos Cronobiológicos/etiología , Trastornos Cronobiológicos/metabolismo , Dislipidemias/etiología , Ghrelina/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Metabolismo de los Lípidos , Receptor de Melatonina MT1/fisiología , Transducción de Señal/fisiología , Animales , Femenino , Glucagón/metabolismo , Masculino , Ratones Noqueados , Resistina/metabolismo
5.
BMC Med Genomics ; 14(1): 136, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34020621

RESUMEN

BACKGROUND: Melatonin is a hormone that is secreted at night by the pineal gland. It exerts its function by binding to the MT1 and MT2 receptors, which are encoded by the MTNR1A and MTNR1B genes, respectively. Previous studies reveal that MTNR1B variants are associated with insulin secretion impairments and an increased body mass index (BMI) in individuals of European and Asian ancestries. Obesity is highly prevalent in the US and disproportionately affects African Americans. Here, we hypothesized that common single nucleotide polymorphisms (SNPs) imputed in 1000 Genomes in the MTNR1B gene are associated with adiposity in African American adult men and women and that the association is modified by insomnia. METHODS: We used an additive genetic model to describe the association between the adiposity traits (BMI and waist circumference) and selected MTNR1B variants in 3,029 Jackson Heart Study participants, with an average age of 55.13 ± 12.84 years, and 62% were women. We regressed the adiposity measures on the estimated allelic or genotypic dosage at every selected SNP and adjusted for age, sex, population stratification, and insomnia. Thirty common SNPs, spanning the MTNR1B gene, with a minor allele frequency ≥ 5%, a call rate ≥ 90%, a Hardy-Weinberg equilibrium p value > 10-6, were available for the analysis. RESULTS: The allele T of rs76371840 was associated with adiposity (OR = 1.47 [1.13-1.82]; PFDR-adjusted = 0.0499), and the allele A of rs8192552 showed a significant association with waist circumference (ß = 0.023 ± 0.007; PFDR-adjusted = 0.0077) after correcting for multiple testing. When insomnia was included in the adiposity analysis model, the following four variants became significantly associated with adiposity: rs6483208; rs4388843; rs4601728; and rs12804291. CONCLUSIONS: Our data indicate that polymorphisms in the MTNR1B gene are associated with obesity traits in African Americans. To the best of our knowledge, this is the first study to explore the effect of insomnia on the association between the circadian MTNR1B genetic variants and metabolic traits in an African American sample population. We observed that insomnia affected the association between the MTNR1B variants and adiposity.


Asunto(s)
Obesidad
6.
Artículo en Inglés | MEDLINE | ID: mdl-31379753

RESUMEN

Melatonin, a hormone synthesized by both the pineal gland and retina, functions as an important modulator of a number of physiological functions. In addition to its rather well-established roles in the regulation of circadian rhythms, sleep, and reproduction, melatonin has also been identified as an important regulator of glucose metabolism. Recent genomic studies have also shown that disruption of melatonin receptors signaling may contribute to the pathogenesis of type 2 diabetes, although the exact mechanisms underlying its action remain unclear. Additionally, a large number of animal studies have highlighted a role for melatonin in the regulation of both glucose metabolism and energy balance. This review summarizes the current knowledge on the role that melatonin and its associated receptors play in the regulation of metabolism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA