Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Glob Chang Biol ; 24(9): 4225-4237, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29569800

RESUMEN

The terrestrial forest ecosystems in the northern high latitude region have been experiencing significant warming rates over several decades. These forests are considered crucial to the climate system and global carbon cycle and are particularly vulnerable to climate change. To obtain an improved estimate of the response of vegetation activity, e.g., forest greenness and tree growth, to climate change, we investigated spatiotemporal variations in two independent data sets containing the dendroecological information for this region over the past 30 years. These indices are the normalized difference vegetation index (NDVI3g) and the tree-ring width index (RWI), both of which showed significant spatial variability in past trends and responses to climate changes. These trends and responses to climate change differed significantly in the ecosystems of the circumarctic (latitude higher than 67°N) and the circumboreal forests (latitude higher and lower than 50°N and 67°N, respectively), but the way in which they differed was relatively similar in the NDVI3g and the RWI. In the circumarctic ecosystem, the climate variables of the current summer were the main climatic drivers for the positive response to the increase in temperatures showed by both the NDVI3g and the RWI indices. On the other hand, in the circumboreal forest ecosystem, the climate variables of the previous year (from summer to winter) were also important climatic drivers for both the NDVI3g and the RWI. Importantly, both indices showed that the temperatures in the previous year negatively affected the ecosystem. Although such negative responses to warming did not necessarily lead to a past negative linear trend in the NDVI3g and the RWI over the past 30 years, future climate warming could potentially cause severe reduction in forest greenness and tree growth in the circumboreal forest ecosystem.


Asunto(s)
Bosques , Calentamiento Global , Árboles/crecimiento & desarrollo , Alaska , Canadá , Cambio Climático , Europa (Continente) , Modelos Biológicos , Análisis de Regresión , Federación de Rusia , Análisis Espacio-Temporal
2.
Glob Chang Biol ; 23(12): 5179-5188, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28585765

RESUMEN

Circumboreal forest ecosystems are exposed to a larger magnitude of warming in comparison with the global average, as a result of warming-induced environmental changes. However, it is not clear how tree growth in these ecosystems responds to these changes. In this study, we investigated the sensitivity of forest productivity to climate change using ring width indices (RWI) from a tree-ring width dataset accessed from the International Tree-Ring Data Bank and gridded climate datasets from the Climate Research Unit. A negative relationship of RWI with summer temperature and recent reductions in RWI were typically observed in continental dry regions, such as inner Alaska and Canada, southern Europe, and the southern part of eastern Siberia. We then developed a multiple regression model with regional meteorological parameters to predict RWI, and then applied to these models to predict how tree growth will respond to twenty-first-century climate change (RCP8.5 scenario). The projections showed a spatial variation and future continuous reduction in tree growth in those continental dry regions. The spatial variation, however, could not be reproduced by a dynamic global vegetation model (DGVM). The DGVM projected a generally positive trend in future tree growth all over the circumboreal region. These results indicate that DGVMs may overestimate future wood net primary productivity (NPP) in continental dry regions such as these; this seems to be common feature of current DGVMs. DGVMs should be able to express the negative effect of warming on tree growth, so that they simulate the observed recent reduction in tree growth in continental dry regions.


Asunto(s)
Cambio Climático , Bosques , Árboles/crecimiento & desarrollo , Alaska , Canadá , Europa (Continente) , Estaciones del Año , Siberia , Temperatura
3.
PLoS One ; 17(7): e0271648, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35862347

RESUMEN

Google Trends (GT) is an online tool designed for searching for changes over time. We assessed its use for evaluating changes in the timing of cherry flowering phenology, which is of intense interest to Japanese people. We examined the relationship between time-series of relative search volume (RSV: relative change in search requests over time obtained from the GT access engine) and cherry flowering information published on websites (as ground truth) in relation to three famous ancient cherry trees. The time-series of RSV showed an annual bell-shaped seasonal variability, and the dates of the maximum RSV tended to correspond to the dates of full bloom. Our results suggest that GT allows monitoring of multiple famous cherry flowering sites where we cannot obtain long-term flowering data to evaluate the spatiotemporal variability of cherry flowering phenology.


Asunto(s)
Flores , Motor de Búsqueda , Humanos , Estaciones del Año , Árboles
4.
Plant Environ Interact ; 1(2): 102-121, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37283728

RESUMEN

Land carbon cycle components in an Earth system model (ESM) play a crucial role in the projections of forest ecosystem responses to climate/environmental changes. Evaluating models from the viewpoint of observations is essential for an improved understanding of model performance and for identifying uncertainties in their outputs. Herein, we evaluated the land net primary production (NPP) for circumboreal forests simulated with 10 ESMs in Phase 5 of the Coupled Model Intercomparison Project by comparisons with observation-based indexes for forest productivity, namely, the composite version 3G of the normalized difference vegetation index (NDVI3g) and tree-ring width index (RWI). These indexes show similar patterns in response to past climate change over the forests, i.e., a one-year time lag response and smaller positive responses to past climate changes in comparison with the land NPP simulated by the ESMs. The latter showed overly positive responses to past temperature and/or precipitation changes in comparison with the NDVI3g and RWI. These results indicate that ESMs may overestimate the future forest NPP of circumboreal forests (particularly for inland dry regions, such as inner Alaska and Canada, and eastern Siberia, and for hotter, southern regions, such as central Europe) under the expected increases in both average global temperature and precipitation, which are common to all current ESMs.

5.
PLoS One ; 14(10): e0223720, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31600327

RESUMEN

The warming trend in the Arctic region is expected to cause drastic changes including permafrost degradation and vegetation shifts. We investigated the spatial distribution of ice content and stable isotopic compositions of water in near-surface permafrost down to a depth of 1 m in the Indigirka River lowlands of northeastern Siberia to examine how the permafrost conditions control vegetation and microtopography in the Taiga-Tundra boundary ecosystem. The gravimetric water content (GWC) in the frozen soil layer was significantly higher at microtopographically high elevations with growing larch trees (i.e., tree mounds) than at low elevations with wetland vegetation (i.e., wet areas). The observed ground ice (ice-rich layer) with a high GWC in the tree mounds suggests that the relatively elevated microtopography of the land surface, which was formed by frost heave, strongly affects the survival of larch trees. The isotopic composition of the ground ice indicated that equilibrium isotopic fractionation occurred during ice segregation at the tree mounds, which implies that the ice formed with sufficient time for the migration of unfrozen soil water to the freezing front. In contrast, the isotopic data for the wet areas indicated that rapid freezing occurred under relatively non-equilibrium conditions, implying that there was insufficient time for ice segregation to occur. The freezing rate of the tree mounds was slower than that of the wet areas due to the difference of such as soil moisture and snow cover depends on vegetation and microtopography. These results indicate that future changes in snow cover, soil moisture, and organic layer, which control underground thermal conductivity, will have significant impacts on the freezing environment of the ground ice at the Taiga-Tundra boundary in northeastern Siberia. Such changes in the freezing environment will then affect vegetation due to changes in the microtopography of the ground surface.


Asunto(s)
Hielo , Isótopos de Oxígeno/análisis , Hielos Perennes , Plantas , Ríos , Taiga , Tundra , Geografía , Siberia , Suelo , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA