Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 137(8): 1315-25, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20332149

RESUMEN

Neural tube formation is one of the most dynamic morphogenetic processes of vertebrate development. However, the molecules regulating its initiation are mostly unknown. Here, we demonstrated that nectin-2, an immunoglobulin-like cell adhesion molecule, is involved in the neurulation of Xenopus embryos in cooperation with N-cadherin. First, we found that, at the beginning of neurulation, nectin-2 was strongly expressed in the superficial cells of neuroepithelium. The knockdown of nectin-2 impaired neural fold formation by attenuating F-actin accumulation and apical constriction, a cell-shape change that is required for neural tube folding. Conversely, the overexpression of nectin-2 in non-neural ectoderm induced ectopic apical constrictions with accumulated F-actin. However, experiments with domain-deleted nectin-2 revealed that the intracellular afadin-binding motif, which links nectin-2 and F-actin, was not required for the generation of the ectopic apical constriction. Furthermore, we found that nectin-2 physically interacts with N-cadherin through extracellular domains, and they cooperatively enhanced apical constriction by driving the accumulation of F-actin at the apical cell surface. Interestingly, the accumulation of N-cadherin at the apical surface of neuroepithelium was dependent on the presence of nectin-2, but that of nectin-2 was not affected by depletion of N-cadherin. We propose a novel mechanism of neural tube morphogenesis regulated by the two types of cell adhesion molecules.


Asunto(s)
Cadherinas/fisiología , Moléculas de Adhesión Celular/fisiología , Tubo Neural/fisiología , Xenopus laevis/embriología , Actinas/genética , Actinas/metabolismo , Animales , Secuencia de Bases , Moléculas de Adhesión Celular/deficiencia , Moléculas de Adhesión Celular/genética , Mapeo Cromosómico , Cartilla de ADN , Embrión no Mamífero/fisiología , Inmunoglobulinas/fisiología , Proteínas de Microfilamentos/genética , Morfogénesis , Nectinas , Tubo Neural/anatomía & histología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Xenopus laevis/genética
2.
Dev Biol ; 360(1): 11-29, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21958745

RESUMEN

The formation of the dorsal-ventral (DV) and anterior-posterior (AP) axes, fundamental to the body plan of animals, is regulated by several groups of polypeptide growth factors including the TGF-ß, FGF, and Wnt families. In order to ensure the establishment of the body plan, the processes of DV and AP axis formation must be linked and coordinately regulated. However, the molecular mechanisms responsible for these interactions remain unclear. Here, we demonstrate that the forkhead box transcription factor FoxB1, which is upregulated by the neuralizing factor Oct-25, plays an important role in the formation of the DV and AP axes. Overexpression of FoxB1 promoted neural induction and inhibited BMP-dependent epidermal differentiation in ectodermal explants, thereby regulating the DV patterning of the ectoderm. In addition, FoxB1 was also found to promote the formation of posterior neural tissue in both ectodermal explants and whole embryos, suggesting its involvement in embryonic AP patterning. Using knockdown analysis, we found that FoxB1 is required for the formation of posterior neural tissues, acting in concert with the Wnt and FGF pathways. Consistent with this, FoxB1 suppressed the formation of anterior structures via a process requiring the function of XWnt-8 and eFGF. Interestingly, while downregulation of FoxB1 had little effect on neural induction, we found that it functionally interacted with its upstream factor Oct-25 and plays a supportive role in the induction and/or maintenance of neural tissue. Our results suggest that FoxB1 is part of a mechanism that fine-tunes, and leads to the coordinated formation of, the DV and AP axes during early development.


Asunto(s)
Tipificación del Cuerpo/fisiología , Factores de Transcripción Forkhead/fisiología , Proteínas de Xenopus/fisiología , Xenopus laevis/embriología , Xenopus laevis/fisiología , Animales , Secuencia de Bases , Tipificación del Cuerpo/genética , Proteínas Morfogenéticas Óseas/metabolismo , Ectodermo/embriología , Ectodermo/metabolismo , Factores de Crecimiento de Fibroblastos/fisiología , Factores de Transcripción Forkhead/deficiencia , Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Morfolinos/genética , Neurogénesis/genética , Neurogénesis/fisiología , Oligonucleótidos Antisentido/genética , Factores del Dominio POU/fisiología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Transfección , Regulación hacia Arriba , Proteínas Wnt/fisiología , Vía de Señalización Wnt , Proteínas de Xenopus/deficiencia , Proteínas de Xenopus/genética , Xenopus laevis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA