Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 13(4): e1006402, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28406900

RESUMEN

While several studies have investigated general properties of the genetic architecture of natural variation in gene expression, few of these have considered natural, outbreeding populations. In parallel, systems biology has established that a general feature of biological networks is that they are scale-free, rendering them buffered against random mutations. To date, few studies have attempted to examine the relationship between the selective processes acting to maintain natural variation of gene expression and the associated co-expression network structure. Here we utilised RNA-Sequencing to assay gene expression in winter buds undergoing bud flush in a natural population of Populus tremula, an outbreeding forest tree species. We performed expression Quantitative Trait Locus (eQTL) mapping and identified 164,290 significant eQTLs associating 6,241 unique genes (eGenes) with 147,419 unique SNPs (eSNPs). We found approximately four times as many local as distant eQTLs, with local eQTLs having significantly higher effect sizes. eQTLs were primarily located in regulatory regions of genes (UTRs or flanking regions), regardless of whether they were local or distant. We used the gene expression data to infer a co-expression network and investigated the relationship between network topology, the genetic architecture of gene expression and signatures of selection. Within the co-expression network, eGenes were underrepresented in network module cores (hubs) and overrepresented in the periphery of the network, with a negative correlation between eQTL effect size and network connectivity. We additionally found that module core genes have experienced stronger selective constraint on coding and non-coding sequence, with connectivity associated with signatures of selection. Our integrated genetics and genomics results suggest that purifying selection is the primary mechanism underlying the genetic architecture of natural variation in gene expression assayed in flushing leaf buds of P. tremula and that connectivity within the co-expression network is linked to the strength of purifying selection.


Asunto(s)
Redes Reguladoras de Genes/genética , Sitios de Carácter Cuantitativo/genética , Selección Genética/genética , Biología de Sistemas , Mapeo Cromosómico , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Fenotipo , Polimorfismo de Nucleótido Simple
2.
New Phytol ; 219(1): 230-245, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29708593

RESUMEN

Xylan is one of the main compounds determining wood properties in hardwood species. The xylan backbone is thought to be synthesized by a synthase complex comprising two members of the GT43 family. We downregulated all GT43 genes in hybrid aspen (Populus tremula × tremuloides) to understand their involvement in xylan biosynthesis. All three clades of the GT43 family were targeted for downregulation using RNA interference individually or in different combinations, either constitutively or specifically in developing wood. Simultaneous downregulation in developing wood of the B (IRX9) and C (IRX14) clades resulted in reduced xylan Xyl content relative to reducing end sequence, supporting their role in xylan backbone biosynthesis. This was accompanied by a higher lignocellulose saccharification efficiency. Unexpectedly, GT43 suppression in developing wood led to an overall growth stimulation, xylem cell wall thinning and a shift in cellulose orientation. Transcriptome profiling of these transgenic lines indicated that cell cycling was stimulated and secondary wall biosynthesis was repressed. We suggest that the reduced xylan elongation is sensed by the cell wall integrity surveying mechanism in developing wood. Our results show that wood-specific suppression of xylan-biosynthetic GT43 genes activates signaling responses, leading to increased growth and improved lignocellulose saccharification.


Asunto(s)
Proteínas de Plantas/genética , Populus/genética , Madera/crecimiento & desarrollo , Xilanos/biosíntesis , Cámbium/genética , Cámbium/crecimiento & desarrollo , Pared Celular/química , Pared Celular/genética , Celulosa/genética , Celulosa/metabolismo , Quimera , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Lignina/genética , Lignina/metabolismo , Familia de Multigenes , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Populus/crecimiento & desarrollo , Regiones Promotoras Genéticas , Interferencia de ARN , Azúcares/metabolismo , Madera/química , Madera/genética , Xilanos/genética
3.
Ecol Evol ; 10(21): 11922-11940, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33209260

RESUMEN

Leaf shape is a defining feature of how we recognize and classify plant species. Although there is extensive variation in leaf shape within many species, few studies have disentangled the underlying genetic architecture. We characterized the genetic architecture of leaf shape variation in Eurasian aspen (Populus tremula L.) by performing genome-wide association study (GWAS) for physiognomy traits. To ascertain the roles of identified GWAS candidate genes within the leaf development transcriptional program, we generated RNA-Seq data that we used to perform gene co-expression network analyses from a developmental series, which is publicly available within the PlantGenIE resource. We additionally used existing gene expression measurements across the population to analyze GWAS candidate genes in the context of a population-wide co-expression network and to identify genes that were differentially expressed between groups of individuals with contrasting leaf shapes. These data were integrated with expression GWAS (eQTL) results to define a set of candidate genes associated with leaf shape variation. Our results identified no clear adaptive link to leaf shape variation and indicate that leaf shape traits are genetically complex, likely determined by numerous small-effect variations in gene expression. Genes associated with shape variation were peripheral within the population-wide co-expression network, were not highly connected within the leaf development co-expression network, and exhibited signatures of relaxed selection. As such, our results are consistent with the omnigenic model.

4.
Nat Plants ; 3: 17061, 2017 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-28481330

RESUMEN

Understanding complex biological systems requires functional characterization of specialized tissue domains. However, existing strategies for generating and analysing high-throughput spatial expression profiles were developed for a limited range of organisms, primarily mammals. Here we present the first available approach to generate and study high-resolution, spatially resolved functional profiles in a broad range of model plant systems. Our process includes high-throughput spatial transcriptome profiling followed by spatial gene and pathway analyses. We first demonstrate the feasibility of the technique by generating spatial transcriptome profiles from model angiosperms and gymnosperms microsections. In Arabidopsis thaliana we use the spatial data to identify differences in expression levels of 141 genes and 189 pathways in eight inflorescence tissue domains. Our combined approach of spatial transcriptomics and functional profiling offers a powerful new strategy that can be applied to a broad range of plant species, and is an approach that will be pivotal to answering fundamental questions in developmental and evolutionary biology.


Asunto(s)
Arabidopsis/genética , Perfilación de la Expresión Génica/métodos , Genes de Plantas , Picea/genética , Populus/genética , Estudios de Factibilidad , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA