Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Allergy Clin Immunol ; 141(3): 1074-1084.e9, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28532657

RESUMEN

BACKGROUND: Diesel exhaust particles (DEPs) are a major component of particulate matter in Europe's largest cities, and epidemiologic evidence links exposure with respiratory symptoms and asthma exacerbations. Respiratory reflexes are responsible for symptoms and are regulated by vagal afferent nerves, which innervate the airway. It is not known how DEP exposure activates airway afferents to elicit symptoms, such as cough and bronchospasm. OBJECTIVE: We sought to identify the mechanisms involved in activation of airway sensory afferents by DEPs. METHODS: In this study we use in vitro and in vivo electrophysiologic techniques, including a unique model that assesses depolarization (a marker of sensory nerve activation) of human vagus. RESULTS: We demonstrate a direct interaction between DEP and airway C-fiber afferents. In anesthetized guinea pigs intratracheal administration of DEPs activated airway C-fibers. The organic extract (DEP-OE) and not the cleaned particles evoked depolarization of guinea pig and human vagus, and this was inhibited by a transient receptor potential ankyrin-1 antagonist and the antioxidant N-acetyl cysteine. Polycyclic aromatic hydrocarbons, major constituents of DEPs, were implicated in this process through activation of the aryl hydrocarbon receptor and subsequent mitochondrial reactive oxygen species production, which is known to activate transient receptor potential ankyrin-1 on nociceptive C-fibers. CONCLUSIONS: This study provides the first mechanistic insights into how exposure to urban air pollution leads to activation of guinea pig and human sensory nerves, which are responsible for respiratory symptoms. Mechanistic information will enable the development of appropriate therapeutic interventions and mitigation strategies for those susceptible subjects who are most at risk.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Asma , Espasmo Bronquial , Regulación de la Expresión Génica/efectos de los fármacos , Material Particulado/toxicidad , Reflejo/efectos de los fármacos , Emisiones de Vehículos , Anciano , Animales , Asma/inducido químicamente , Asma/metabolismo , Asma/patología , Asma/fisiopatología , Espasmo Bronquial/inducido químicamente , Espasmo Bronquial/metabolismo , Espasmo Bronquial/patología , Espasmo Bronquial/fisiopatología , Femenino , Cobayas , Humanos , Masculino , Ratones , Persona de Mediana Edad
2.
Environ Sci Technol ; 49(13): 8048-56, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26061974

RESUMEN

The increase of production volumes of silver nanowires (AgNWs) and of consumer products incorporating them may lead to increased health risks from occupational and public exposures. There is currently limited information about the putative toxicity of AgNWs upon inhalation and incomplete understanding of the properties that control their bioreactivity. The lung lining fluid (LLF), which contains phospholipids and surfactant proteins, represents a first contact site with the respiratory system. In this work, the impact of dipalmitoylphosphatidylcholine (DPPC), Curosurf, and murine LLF on the stability of AgNWs was examined. Both the phospholipid and protein components of the LLF modified the dissolution kinetics of AgNWs, due to the formation of a lipid corona or aggregation of the AgNWs. Moreover, the hydrophilic proteins, but neither the hydrophobic surfactant proteins nor the phospholipids, induced agglomeration of the AgNWs. Finally, the generation of a secondary population of nanosilver was observed and attributed to the reduction of Ag(+) ions by the surface capping of the AgNWs. Our findings highlight that combinations of spatially resolved dynamic and static techniques are required to develop a holistic understanding of which parameters govern AgNW behavior at the point of exposure and to accurately predict their risks on human health and the environment.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Productos Biológicos/química , Nanocables/química , Fosfolípidos/química , Surfactantes Pulmonares/química , Plata/química , Animales , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Microscopía/métodos
3.
Part Fibre Toxicol ; 12: 19, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26133975

RESUMEN

BACKGROUND: Engineered nanoparticles (NP) are being developed for inhaled drug delivery. This route is non-invasive and the major target; alveolar epithelium provides a large surface area for drug administration and absorption, without first pass metabolism. Understanding the interaction between NPs and target cells is crucial for safe and effective NP-based drug delivery. We explored the differential effect of neutral, cationic and anionic polystyrene latex NPs on the target cells of the human alveolus, using primary human alveolar macrophages (MAC) and primary human alveolar type 2 (AT2) epithelial cells and a unique human alveolar epithelial type I-like cell (TT1). We hypothesized that the bioreactivity of the NPs would relate to their surface chemistry, charge and size as well as the functional role of their interacting cells in vivo. METHODS: Amine- (ANP) and carboxyl- surface modified (CNP) and unmodified (UNP) polystyrene NPs, 50 and 100 nm in diameter, were studied. Cells were exposed to 1-100 µg/ml (1.25-125 µg/cm(2); 0 µg/ml control) NP for 4 and 24 h at 37 °C with or without the antioxidant, N-acetyl cysteine (NAC). Cells were assessed for cell viability, reactive oxygen species (ROS), oxidised glutathione (GSSG/GSH ratio), mitochondrial integrity, cell morphology and particle uptake (using electron microscopy and laser scanning confocal microscopy). RESULTS: ANP-induced cell death occurred in all cell types, inducing increased oxidative stress, mitochondrial disruption and release of cytochrome C, indicating apoptotic cell death. UNP and CNP exhibited little cytotoxicity or mitochondrial damage, although they induced ROS in AT2 and MACs. Addition of NAC reduced epithelial cell ROS, but not MAC ROS, for up to 4 h. TT1 and MAC cells internalised all NP formats, whereas only a small fraction of AT2 cells internalized ANP (not UNP or CNP). TT1 cells were the most resistant to the effects of UNP and CNP. CONCLUSION: ANP induced marked oxidative damage and cell death via apoptosis in all cell types, while UNP and CNP exhibited low cytotoxicity via oxidative stress. MAC and TT1 cell models show strong particle-internalization compared to the AT2 cell model, reflecting their cell function in vivo. The 50 nm NPs induced a higher bioreactivity in epithelial cells, whereas the 100 nm NPs show a stronger effect on phagocytic cells.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Portadores de Fármacos , Macrófagos Alveolares/efectos de los fármacos , Nanopartículas , Poliestirenos/toxicidad , Alveolos Pulmonares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/ultraestructura , Aniones , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Transporte Biológico , Cationes , Línea Celular , Forma de la Célula , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Disulfuro de Glutatión/metabolismo , Humanos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/ultraestructura , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Poliestirenos/química , Poliestirenos/metabolismo , Cultivo Primario de Células , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/ultraestructura , Especies Reactivas de Oxígeno/metabolismo , Propiedades de Superficie , Factores de Tiempo
4.
Nano Lett ; 14(3): 1202-7, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24555574

RESUMEN

Experimental data on dynamic interactions between individual nanoparticles and membrane processes at nanoscale, essential for biomedical applications of nanoparticles, remain scarce due to limitations of imaging techniques. We were able to follow single 200 nm carboxyl-modified particles interacting with identified membrane structures at the rate of 15 s/frame using a scanning ion conductance microscope modified for simultaneous high-speed topographical and fluorescence imaging. The imaging approach demonstrated here opens a new window into the complexity of nanoparticle-cell interactions.


Asunto(s)
Membrana Celular/metabolismo , Nanopartículas/química , Línea Celular , Humanos , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Microscopía por Video/instrumentación , Microscopía por Video/métodos
6.
Carbon N Y ; 78: 26-37, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25780270

RESUMEN

Multiwalled carbon nanotube (MWCNT) length is suggested to critically determine their pulmonary toxicity. This stems from in vitro and in vivo rodent studies and in vitro human studies using cell lines (typically cancerous). There is little data using primary human lung cells. We addressed this knowledge gap, using highly relevant, primary human alveolar cell models exposed to precisely synthesized and thoroughly characterized MWCNTs. In this work, transformed human alveolar type-I-like epithelial cells (TT1), primary human alveolar type-II epithelial cells (ATII) and alveolar macrophages (AM) were treated with increasing concentrations of MWCNTs before measuring cytotoxicity, inflammatory mediator release and MAP kinase signalling. Strikingly, we observed that short MWCNTs (~0.6 µm in length) induced significantly greater responses from the epithelial cells, whilst AM were particularly susceptible to long MWCNTs (~20 µm). These differences in the pattern of mediator release were associated with alternative profiles of JNK, p38 and ERK1/2 MAP kinase signal transduction within each cell type. This study, using highly relevant target human alveolar cells and well defined and characterized MWCNTs, shows marked cellular responses to the MWCNTs that vary according to the target cell type, as well as the aspect ratio of the MWCNT.

7.
Int J Mol Sci ; 15(12): 23936-74, 2014 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-25535082

RESUMEN

Demand for silver engineered nanomaterials (ENMs) is increasing rapidly in optoelectronic and in health and medical applications due to their antibacterial, thermal, electrical conductive, and other properties. The continued commercial up-scaling of ENM production and application needs to be accompanied by an understanding of the occupational health, public safety and environmental implications of these materials. There have been numerous in vitro studies and some in vivo studies of ENM toxicity but their results are frequently inconclusive. Some of the variability between studies has arisen due to a lack of consistency between experimental models, since small differences between test materials can markedly alter their behaviour. In addition, the propensity for the physicochemistry of silver ENMs to alter, sometimes quite radically, depending on the environment they encounter, can profoundly alter their bioreactivity. Consequently, it is important to accurately characterise the materials before use, at the point of exposure and at the nanomaterial-tissue, or "nanobio", interface, to be able to appreciate their environmental impact. This paper reviews current literature on the pulmonary effects of silver nanomaterials. We focus our review on describing whether, and by which mechanisms, the chemistry and structure of these materials can be linked to their bioreactivity in the respiratory system. In particular, the mechanisms by which the physicochemical properties (e.g., aggregation state, morphology and chemistry) of silver nanomaterials change in various biological milieu (i.e., relevant proteins, lipids and other molecules, and biofluids, such as lung surfactant) and affect subsequent interactions with and within cells will be discussed, in the context not only of what is measured but also of what can be visualized.


Asunto(s)
Exposición por Inhalación/efectos adversos , Nanoestructuras , Plata , Animales , Ecotoxicología/métodos , Humanos , Enfermedades Pulmonares/etiología , Nanoestructuras/química , Nanoestructuras/ultraestructura , Riesgo , Plata/química
8.
ACS Appl Mater Interfaces ; 16(4): 4307-4320, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38240181

RESUMEN

Hemorrhage is the leading cause of trauma death, and innovation in hemostatic technology is important. The strongly hydrophobic carbon nanofiber (CNF) coating has previously been shown to have excellent hemostatic properties. However, the understanding of how CNF coating guides the coagulation cascade and the biosafety of CNF as hemostatic agents has yet to be explored. Here, our thrombin generation assay investigation showed that CNF induced fast blood coagulation via factor (F) XII activation of the intrinsic pathway. We further performed studies of a rat vein injury and demonstrated that the CNF gauze enabled a substantial reduction of blood loss compared to both the plain gauze and kaolin-imbued gauze (QuikClot). Analysis of blood samples from the model revealed no acute toxicity from the CNF gauze, with no detectable CNF deposition in any organ, suggesting that the immobilization of CNF on our gauze prevented the infiltration of CNF into the bloodstream. Direct injection of CNF into the rat vein was also investigated and found not to elicit overt acute toxicity or affect animal survival or behavior. Finally, toxicity assays with primary keratinocytes revealed minimal toxicity responses to CNF. Our studies thus supported the safety and efficacy of the CNF hemostatic gauze, highlighting its potential as a promising approach in the field of hemostatic control.


Asunto(s)
Hemorragia , Hemostáticos , Ratas , Animales , Hemorragia/prevención & control , Hemostáticos/farmacología , Hemostáticos/uso terapéutico , Coagulación Sanguínea , Hemostasis , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Animales de Enfermedad
9.
Environ Sci Technol ; 47(23): 13813-21, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24160871

RESUMEN

There is a growing concern about the potential adverse effects on human health upon exposure to engineered silver nanomaterials (particles, wires, and plates). However, the majority of studies testing the toxicity of silver nanomaterials have examined nominally "as-synthesized" materials without considering the fate of the materials in biologically relevant fluids. Here, in-house silver nanowires (AgNWs) were prepared by a modified polyol process and were incubated in three cell culture media (DMEM, RPMI-1640, and DCCM-1) to examine the impact of AgNW-medium interactions on the physicochemical properties of the AgNWs. High-resolution analytical transmission electron microscopy revealed that Ag2S crystals form on the surface of AgNWs within 1 h of incubation in DCCM-1. In contrast, the incubation of AgNWs in RPMI-1640 or DMEM did not lead to sulfidation. When the DCCM-1 cell culture medium was separated into its small molecule solutes and salts and protein components, the AgNWs were found to sulfidize in the fraction containing small molecule solutes and salts but not in the fraction containing the protein component of the media. Further investigation showed the AgNWs did not readily sulfidize in the presence of isolated sulfur containing amino acids or proteins, such as cysteine or bovine serum albumin (BSA). The results demonstrate that the AgNWs can be transformed by the media before and during the incubation with cells, and therefore, the effects of cell culture media must be considered in the analysis of toxicity assays. Appropriate media and material controls must be in place to allow accurate predictions about the toxicity and, ultimately, the health risk of this commercially relevant class of nanomaterial.


Asunto(s)
Medios de Cultivo/farmacología , Microscopía Electrónica de Transmisión/métodos , Nanocables/química , Plata/química , Cinética , Nanocables/ultraestructura , Temperatura
10.
Environ Sci Technol ; 47(22): 13077-85, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24144266

RESUMEN

Fuel additives incorporating nanosized ceria have been increasingly used in diesel engines as combustion promoters. However, few studies have assessed the impact of these nanotechnology-based additives on pollutant emissions. Here, we systematically compare emission rates of particulate and gaseous pollutants from a single-cylinder, four-cycle diesel engine using fuel mixes containing nanoceria of varying concentrations. The test fuels were made by adding different amounts of a commercial fuel additive Envirox into an ultralow-sulfur diesel fuel at 0 (base fuel), 0.1-, 1-, and 10-fold the manufacturer-recommended concentration of 0.5 mL Envirox per liter of fuel. The addition of Envirox resulted in ceria-concentration-dependent emission reductions of CO2, CO, total particulate mass, formaldehyde, acetaldehyde, acrolein, and several polycyclic aromatic hydrocarbons. These reductions at the manufacturer-recommended doping concentration, however, were accompanied by a substantial increase of certain other air pollutants, specifically the number of ultrafine particles (+32%), NO(x) (+9.3%), and the particle-phase benzo[a]pyrene toxic equivalence quotient (+35%). Increasing fuel ceria concentrations also led to decreases in the size of emitted particles. Given health concerns related to ultrafine particles and NO(x), our findings call for additional studies to further evaluate health risks associated with the use of nanoceria additives in various engines under various operating conditions.


Asunto(s)
Contaminantes Atmosféricos/análisis , Cerio/química , Gases/análisis , Gasolina/análisis , Nanopartículas/química , Tamaño de la Partícula , Material Particulado/análisis , Emisiones de Vehículos/análisis , Aerosoles/química , Aldehídos/análisis , Dióxido de Carbono/análisis , Monóxido de Carbono/análisis , Óxidos de Nitrógeno/análisis , Hidrocarburos Policíclicos Aromáticos/análisis
11.
Environ Sci Technol ; 47(19): 11232-40, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23988335

RESUMEN

The growing use of silver nanoparticles (AgNPs) in consumer products has raised concerns about their potential impact on the environment and human health. Whether AgNPs dissolve and release Ag(+) ions, or coarsen to form large aggregates, is critical in determining their potential toxicity. In this work, the stability of AgNPs in dipalmitoylphosphatidylcholine (DPPC), the major component of pulmonary surfactant, was investigated as a function of pH. Spherical, citrate-capped AgNPs with average diameters of 14 ± 1.6 nm (n = 200) were prepared by a chemical bath reduction. The kinetics of Ag(+) ion release was strongly pH-dependent. After 14 days of incubation in sodium perchlorate (NaClO4) or perchloric acid (HClO4) solutions, the total fraction of AgNPs dissolved varied from ∼10% at pH 3, to ∼2% at pH 5, with negligible dissolution at pH 7. A decrease in pH from 7 to 3 also promoted particle aggregation and coarsening. DPPC (100 mg·L(-1)) delayed the release of Ag(+) ions, but did not significantly alter the total amount of Ag(+) released after two weeks. In addition, DPPC improved the dispersion of the AgNPs and inhibited aggregation and coarsening. TEM images revealed that the AgNPs were coated with a DPPC layer serving as a semipermeable layer. Hence, lung lining fluid, particularly DPPC, can modify the aggregation state and kinetics of Ag(+) ion release of inhaled AgNPs in the lung. These observations have important implications for predicting the potential reactivity of AgNPs in the lung and the environment.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Nanopartículas del Metal/química , Surfactantes Pulmonares/química , Plata/química , Ácido Cítrico/química , Concentración de Iones de Hidrógeno , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Transmisión
12.
J Funct Biomater ; 14(4)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37103279

RESUMEN

Recently, there has been increasing interest in developing biocompatible inhalable nanoparticle formulations, as they have enormous potential for treating and diagnosing lung disease. In this respect, here, we have studied superparamagnetic iron-doped calcium phosphate (in the form of hydroxyapatite) nanoparticles (FeCaP NPs) which were previously proved to be excellent materials for magnetic resonance imaging, drug delivery and hyperthermia-related applications. We have established that FeCaP NPs are not cytotoxic towards human lung alveolar epithelial type 1 (AT1) cells even at high doses, thus proving their safety for inhalation administration. Then, D-mannitol spray-dried microparticles embedding FeCaP NPs have been formulated, obtaining respirable dry powders. These microparticles were designed to achieve the best aerodynamic particle size distribution which is a critical condition for successful inhalation and deposition. The nanoparticle-in-microparticle approach resulted in the protection of FeCaP NPs, allowing their release upon microparticle dissolution, with dimensions and surface charge close to the original values. This work demonstrates the use of spray drying to provide an inhalable dry powder platform for the lung delivery of safe FeCaP NPs for magnetically driven applications.

13.
Am J Physiol Cell Physiol ; 300(3): C466-76, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21160031

RESUMEN

Rab27 small GTPases regulate secretion and movement of lysosome-related organelles such as T cell cytolytic granules and platelet-dense granules. Previous studies indicated that Rab27a and Rab27b are expressed in the murine lung suggesting that they regulate secretory processes in the lung. Consistent with those studies, we found that Rab27a and Rab27b are expressed in cell types that contain secretory granules: alveolar epithelial type II (AEII) and Clara cells. We then used Rab27a/Rab27b double knockout (DKO) mice to examine the functional consequence of loss of Rab27 proteins in the murine lung. Light and electron microscopy revealed a number of morphological changes in lungs from DKO mice when compared with those in control animals. In aged DKO mice we observed atrophy of the bronchiolar and alveolar epithelium with reduction of cells numbers, thinning of the bronchiolar epithelium and alveolar walls, and enlargement of alveolar airspaces. In these samples we also observed increased numbers of activated foamy alveolar macrophages and granulocyte containing infiltrates together with reduction in the numbers of Clara cells and AEII cells compared with control. At the ultrastructural level we observed accumulation of cytoplasmic membranes and vesicles in Clara cells. Meanwhile, AEII cells in DKO accumulated large mature lamellar bodies and lacked immature/precursor lamellar bodies. We hypothesize that the morphological changes observed at the ultrastructural level in DKO samples result from secretory defects in AEII and Clara cells and that over time these defects lead to atrophy of the epithelium.


Asunto(s)
Pulmón/anomalías , Pulmón/metabolismo , Mucosa Respiratoria/anomalías , Mucosa Respiratoria/metabolismo , Proteínas de Unión al GTP rab/deficiencia , Animales , Atrofia , Pulmón/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Alveolos Pulmonares/anomalías , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/ultraestructura , Mucosa Respiratoria/ultraestructura , Vesículas Secretoras/patología , Vesículas Secretoras/ultraestructura , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/ultraestructura , Proteínas rab27 de Unión a GTP
14.
Am J Respir Crit Care Med ; 182(1): 73-82, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20203246

RESUMEN

RATIONALE: Patients with idiopathic pulmonary fibrosis (IPF), a progressive disease with a dismal prognosis, exhibit an unexplained disparity of increased alveolar epithelial cell (AEC) apoptosis but reduced fibroblast apoptosis. OBJECTIVES: To examine whether the failure of patients with IPF to up-regulate cyclooxygenase (COX)-2, and thus the antifibrotic mediator prostaglandin (PG)E(2), accounts for this imbalance. METHODS: Fibroblasts and primary type II AECs were isolated from control and fibrotic human lung tissue. The effects of COX-2 inhibition and exogenous PGE(2) on fibroblast and AEC sensitivity to Fas ligand (FasL)-induced apoptosis were assessed. MEASUREMENTS AND MAIN RESULTS: IPF lung fibroblasts are resistant to FasL-induced apoptosis compared with control lung fibroblasts. Inhibition of COX-2 in control lung fibroblasts resulted in an apoptosis-resistant phenotype. Administration of PGE(2) almost doubled the rate of FasL-induced apoptosis in fibrotic lung fibroblasts compared with FasL alone. Conversely, in primary fibrotic lung type II AECs, PGE(2) protected against FasL-induced apoptosis. In human control and, to a greater extent, fibrotic lung fibroblasts, PGE(2) inhibits the phosphorylation of Akt, suggesting that regulation of this prosurvival protein kinase is an important mechanism by which PGE(2) modulates cellular apoptotic responses. CONCLUSIONS: The observation that PGE(2) deficiency results in increased AEC but reduced fibroblast sensitivity to apoptosis provides a novel pathogenic insight into the mechanisms driving persistent fibroproliferation in IPF.


Asunto(s)
Apoptosis/fisiología , Ciclooxigenasa 2/fisiología , Dinoprostona/fisiología , Fibroblastos/fisiología , Fibrosis Pulmonar Idiopática/fisiopatología , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Células Cultivadas , Células Epiteliales/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Alveolos Pulmonares/fisiología , Cicatrización de Heridas/fisiología
15.
Biophys J ; 98(8): 1703-11, 2010 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-20409492

RESUMEN

Researchers have previously questioned the suitability of cell lines as models for primary cells. In this study, we used Raman microspectroscopy to characterize live A549 cells from a unique molecular biochemical perspective to shed light on their suitability as a model for primary human pulmonary alveolar type II (ATII) cells. We also investigated a recently developed transduced type I (TT1) cell line as a model for alveolar type I (ATI) cells. Single-cell Raman spectra provide unique biomolecular fingerprints that can be used to characterize cellular phenotypes. A multivariate statistical analysis of Raman spectra indicated that the spectra of A549 and TT1 cells are characterized by significantly lower phospholipid content compared to ATII and ATI spectra because their cytoplasm contains fewer surfactant lamellar bodies. Furthermore, we found that A549 spectra are statistically more similar to ATI spectra than to ATII spectra. The spectral variation permitted phenotypic classification of cells based on Raman spectral signatures with >99% accuracy. These results suggest that A549 cells are not a good model for ATII cells, but TT1 cells do provide a reasonable model for ATI cells. The findings have far-reaching implications for the assessment of cell lines as suitable primary cellular models in live cultures.


Asunto(s)
Modelos Biológicos , Espectrometría Raman/métodos , Línea Celular , Forma de la Célula , Supervivencia Celular , Análisis Discriminante , Humanos , Pulmón/citología , Fenotipo , Fosfatidilcolinas/metabolismo , Análisis de Componente Principal
16.
Emerg Top Life Sci ; 4(6): 551-554, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33295610

RESUMEN

The 1980s mark the starting point of nanotechnology: the capacity to synthesise, manipulate and visualise matter at the nanometre scale. New powers to reach the nanoscale brought us the unprecedented possibility to directly target at the scale of biomolecular interactions, and the motivation to create smart nanostructures that could circumvent the hurdles hindering the success of traditional pharmacological approaches. Forty years on, the progressive integration of bio- and nanotechnologies is starting to produce a transformation of the way we detect, treat and monitor diseases and unresolved medical problems [ 1]. While much of the work remains in research laboratories, the first nano-based treatments, vaccines, drugs, and diagnostic devices, are now receiving approval for commercialisation and clinical use. In this special issue we review recent advances of nanomedical approaches to combat antibiotic resistance, treatment and detection of cancers, targeting neurodegerative diseases, and applications as diverse as dentistry and the treatment of tuberculosis. We also examine the use of advanced smart nanostructured materials in areas such as regenerative medicine, and the controlled release of drugs and treatments. The latter is currently poised to bring ground-breaking changes in immunotherapy: the advent of 'vaccine implants' that continuously control and improve immune responses over time. With the increasingly likely prospect of ending the COVID 19 pandemic with the aid of a nanomedicine-based vaccine (both Moderna and BioNTech/Pfizer vaccines are based on lipid nanoparticle formulations), we are witnessing the coming of age of nanomedicine. This makes it more important than ever to concentrate on safety: in parallel to pursuing the benefits of nanomedine, we must strengthen the continuous focus on nanotoxicology and safety regulation of nanomedicines that can deliver the medical revolution that is within our grasp.


Asunto(s)
Biotecnología/métodos , Nanomedicina/métodos , Nanotecnología/métodos , COVID-19/epidemiología , COVID-19/virología , Vacunas contra la COVID-19/uso terapéutico , Humanos , Pandemias , SARS-CoV-2/aislamiento & purificación
17.
Sci Rep ; 10(1): 20486, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33235275

RESUMEN

To overcome the scarcity of primary human alveolar epithelial cells for lung research, and the limitations of current cell lines to recapitulate the phenotype, functional and molecular characteristics of the healthy human alveolar epithelium, we have developed a new method to immortalise primary human alveolar epithelial lung cells using a non-viral vector to transfect the telomerase catalytic subunit (hTERT) and the simian virus 40 large-tumour antigen (SV40). Twelve strains of immortalised cells (ICs) were generated and characterised using molecular, immunochemical and morphological techniques. Cell proliferation and sensitivity to polystyrene nanoparticles (PS) were evaluated. ICs expressed caveolin-1, podoplanin and receptor for advanced glycation end-products (RAGE), and most cells were negative for alkaline phosphatase staining, indicating characteristics of AT1-like cells. However, most strains also contained some cells that expressed pro-surfactant protein C, classically described to be expressed only by AT2 cells. Thus, the ICs mimic the cellular heterogeneity in the human alveolar epithelium. These ICs can be passaged, replicate rapidly and remain confluent beyond 15 days. ICs showed differential sensitivity to positive and negatively charged PS nanoparticles, illustrating their potential value as an in vitro model to study respiratory bioreactivity. These novel ICs offer a unique resource to study human alveolar epithelial biology.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Vectores Genéticos/metabolismo , Fosfatasa Alcalina/metabolismo , Células Epiteliales Alveolares/ultraestructura , Línea Celular Transformada , Proliferación Celular , Respiración de la Célula , Supervivencia Celular , Células Cultivadas , Humanos , Hidrodinámica , Lípidos/química , Nanopartículas/ultraestructura , Tamaño de la Partícula , ARN Mensajero/genética , ARN Mensajero/metabolismo , Electricidad Estática , Transcripción Genética , Transfección
18.
Emerg Top Life Sci ; 4(6): 627-643, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33270840

RESUMEN

Lung cancer (LC) is one of the most deadly cancers worldwide, with very low survival rates, mainly due to poor management, which has barely changed in recent years. Nanomedicines, especially gold nanomaterials, with their unique and size-dependent properties offer a potential solution to many challenges in the field. The versatility afforded by the shape, size, charge and surface chemistry of gold nanostructures allows them to be adapted for many applications in the diagnosis, treatment and imaging of LC. In this review, a survey of the most recent advances in the field is presented with an emphasis on the optical properties of gold nanoscale materials and their use in cancer management. Gold nanoparticle toxicology has also been a focus of interest for many years but the studies have also sometimes arrived at contradictory conclusions. To enable extrapolation and facilitate the development of medicines based on gold nanomaterials, it must be assumed that each design will have its own unique characteristics that require evaluation before translation to the clinic. Advances in the understanding and recognition of the molecular signatures of LC have aided the development of personalised medicines. Tailoring the treatment to each case should, ideally increase the survival outcomes as well as reduce medical costs. This review seeks to present the potential of gold nanomaterials in LC management and to provide a unified view, which will be of interest to those in the field as well as researchers considering entering this highly important area of research.


Asunto(s)
Neoplasias Pulmonares , Nanopartículas del Metal , Nanoestructuras , Oro , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamiento farmacológico , Nanomedicina
19.
Emerg Top Life Sci ; 4(6): 581-600, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33315067

RESUMEN

Tuberculosis (TB) is caused by a bacterial infection that affects a number of human organs, primarily the lungs, but also the liver, spleen, and spine, causing key symptoms of fever, fatigue, and persistent cough, and if not treated properly, can be fatal. Every year, 10 million individuals become ill with active TB resulting with a mortality approximating 1.5 million. Current treatment guidelines recommend oral administration of a combination of first-line anti-TB drugs for at least 6 months. While efficacious under optimum conditions, 'Directly Observed Therapy Short-course' (DOTS) is not without problems. The long treatment time and poor pharmacokinetics, alongside drug side effects lead to poor patient compliance and has accelerated the emergence of multi-drug resistant (MDR) organisms. All this, combined with the limited number of newly discovered TB drugs to treat MDR-TB and shorten standard therapy time, has highlighted the need for new targeted drug delivery systems. In this respect, there has been recent focus on micro- and nano-particle technologies to prepare organic or/and metal particles loaded with TB drugs to enhance their efficacy by targeted delivery via the inhaled route. In this review, we provide a brief overview of the current epidemiology of TB, and risk factors for progression of latent stage tuberculosis (LTBI) to the active TB. We identify current TB treatment regimens, newly discovered TB drugs, and identify studies that have used micro- or nano-particles technologies to design a reliable inhalation drug delivery system to treat TB more effectively.


Asunto(s)
Mycobacterium tuberculosis , Preparaciones Farmacéuticas , Tuberculosis , Antituberculosos/efectos adversos , Humanos , Iones , Tuberculosis/tratamiento farmacológico
20.
Environ Toxicol Pharmacol ; 73: 103273, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31629203

RESUMEN

Cerium dioxide nanoparticles (CeO2NPs) have been used as diesel fuel-borne catalysts for improved efficiency and pollutant emissions. Concerns that such material may influence diesel exhaust particle (DEP) effects within the lung upon inhalation, prompted us to examine particle responses in mice in the presence and absence of the common allergen house dust mite (HDM). Repeated intranasal instillation of combined HDM and DEP increased airway mucin, eosinophils, lymphocytes, IL-5, IL-13, IL-17A and plasma IgE, which were further increased with CeO2NPs co-exposure. A single co-exposure of CeO2NPs and DEP after repeated HDM exposure increased macrophage and IL-17A levels above DEP induced levels. CeO2NPs exposure in the absence of HDM also resulted in increased levels of plasma IgE and airway mucin staining, changes not observed with repeated DEP exposure alone. These observations indicate that CeO2NPs can modify exhaust particulate and allergen induced inflammatory events in the lung with the potential to influence conditions such as allergic airway disease.


Asunto(s)
Cerio/toxicidad , Nanopartículas/toxicidad , Pyroglyphidae , Hipersensibilidad Respiratoria , Emisiones de Vehículos/toxicidad , Alérgenos , Animales , Polvo , Inflamación , Interleucina-17 , Pulmón/inmunología , Ratones , Material Particulado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA