RESUMEN
Reactive iodine plays a key role in determining the oxidation capacity, or cleansing capacity, of the atmosphere in addition to being implicated in the formation of new particles in the marine boundary layer. The postulation that heterogeneous cycling of reactive iodine on aerosols may significantly influence the lifetime of ozone in the troposphere not only remains poorly understood but also heretofore has never been observed or quantified in the field. Here, we report direct ambient observations of hypoiodous acid (HOI) and heterogeneous recycling of interhalogen product species (i.e., iodine monochloride [ICl] and iodine monobromide [IBr]) in a midlatitude coastal environment. Significant levels of ICl and IBr with mean daily maxima of 4.3 and 3.0 parts per trillion by volume (1-min average), respectively, have been observed throughout the campaign. We show that the heterogeneous reaction of HOI on marine aerosol and subsequent production of iodine interhalogens are much faster than previously thought. These results indicate that the fast formation of iodine interhalogens, together with their rapid photolysis, results in more efficient recycling of atomic iodine than currently considered in models. Photolysis of the observed ICl and IBr leads to a 32% increase in the daytime average of atomic iodine production rate, thereby enhancing the average daytime iodine-catalyzed ozone loss rate by 10 to 20%. Our findings provide direct field evidence that the autocatalytic mechanism of iodine release from marine aerosol is important in the atmosphere and can have significant impacts on atmospheric oxidation capacity.
RESUMEN
The inter-conversion of nitrogen and sulfur species between the gas and particulate phases and their interaction with alkaline species influences the acidity of the aerosols and surface snow. To better understand these processes, a short field campaign was undertaken in Ny-Ålesund, Svalbard, during 13th April 2012 to 24th April 2012. Air measurements were carried out through a particulate sampler equipped with denuders and filter packs for simultaneous collection of trace gases (HNO3, NO2, SO2 and reactive nitrogen compounds) and aerosols, with daily collection of snow samples. Ionic composition of the samples was analyzed using ion chromatography technique. The results suggested that nitrate-rich aerosols are formed when PAN (peroxy acetyl nitrate) disassociates to form NO2 and HNO3 which further hydrolyzes to form pNO3- (particulate nitrate). This resulted in a high contribution of pNO3- (62%) to the total nitrogen budget over the study area. The acidity of the aerosols and snow evaluated through cation/anion ratio (C/A) indicated alkaline conditions with C/A>2. The bicarbonates/carbonates of Mg2+ played an important role in neutralization processes of surface snow while the role of NH3 was dominant in aerosol neutralization processes. Such neutralization processes can increase the aerosol hygroscopicity causing warming. Chloride depletion in the snow was significant as compared to the aerosols, indicating two important processes, scavenging of coarse sea salt by the snow and gaseous adsorption of SO2 on the snow surface. However, a more systematic and long term study is required for a better understanding of the neutralization processes and chemical inter-conversions.
Asunto(s)
Clima Frío , Material Particulado/química , Nieve/química , Aerosoles , Concentración de Iones de Hidrógeno , Nitrógeno/química , Azufre/químicaRESUMEN
To investigate the distribution and source pathways of environmentally critical trace metals in coastal Antarctica, trace elemental concentrations were analyzed in 36 surface snow samples along a coast to inland transect in the Ingrid Christensen Coast of East Antarctica. The samples were collected and analyzed using the clean protocols and an inductively coupled plasma mass spectrometer. Within the coastal ice-free and ice-covered region, marine elements (Na, Ca, Mg, K, Li, and Sr) revealed enhanced concentrations as compared with inland sites. Along with the sea-salt elements, the coastal ice-free sites were also characterized by enhanced concentrations of Al, Fe, Mn, V, Cr, and Zn. The crustal enrichment factors (Efc) confirm a dominant crustal source for Fe and Al and a significant source for Cr, V, Co, and Ba, which clearly reflects the influence of petrological characteristics of the Larsemann Hills on the trace elemental composition of surface snow. The Efc of elements revealed that Zn, Cu, Mo, Cd, As, Se, Sb, and Pb are highly enriched compared with the known natural sources, suggesting an anthropogenic origin for these elements. Evaluation of the contributions to surface snow from the different sources suggests that while contribution from natural sources is relatively significant, local contamination from the increasing research station and logistic activities within the proximity of study area cannot be ignored.
Asunto(s)
Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Metales/análisis , Nieve/química , Regiones Antárticas , Contaminación Ambiental/estadística & datos numéricos , Análisis EspacialRESUMEN
Chlorine radicals are strong atmospheric oxidants known to play an important role in the depletion of surface ozone and the degradation of methane in the Arctic troposphere. Initial oxidation processes of chlorine produce chlorine oxides, and it has been speculated that the final oxidation steps lead to the formation of chloric (HClO3) and perchloric (HClO4) acids, although these two species have not been detected in the atmosphere. Here, we present atmospheric observations of gas-phase HClO3 and HClO4. Significant levels of HClO3 were observed during springtime at Greenland (Villum Research Station), Ny-Ålesund research station and over the central Arctic Ocean, on-board research vessel Polarstern during the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC) campaign, with estimated concentrations up to 7 × 106 molecule cm-3. The increase in HClO3, concomitantly with that in HClO4, was linked to the increase in bromine levels. These observations indicated that bromine chemistry enhances the formation of OClO, which is subsequently oxidized into HClO3 and HClO4 by hydroxyl radicals. HClO3 and HClO4 are not photoactive and therefore their loss through heterogeneous uptake on aerosol and snow surfaces can function as a previously missing atmospheric sink for reactive chlorine, thereby reducing the chlorine-driven oxidation capacity in the Arctic boundary layer. Our study reveals additional chlorine species in the atmosphere, providing further insights into atmospheric chlorine cycling in the polar environment.
RESUMEN
Airborne transmission is one of the routes for the spread of COVID-19 which is caused by inhalation of smaller droplets1 containing SARS-CoV-2 (i.e., either virus-laden particulate matter: PM and/or droplet nuclei) in an indoor environment. Notably, a significant fraction of the small droplets, along with respiratory droplets, is produced by both symptomatic and asymptomatic individuals during expiratory events such as breathing, sneezing, coughing and speaking. When these small droplets are exposed to the ambient environment, they may interact with PM and may remain suspended in the atmosphere even for several hours. Therefore, it is important to know the fate of these droplets and processes (e.g., physical and chemical) in the atmosphere to better understand airborne transmission. Therefore, we reviewed existing literature focussed on the transmission of SARS-CoV-2 in the spread of COVID-19 and present an environmental perspective on why airborne transmission hasn't been very conclusive so far. In addition, we discuss various environmental factors (e.g., temperature, humidity, etc.) and sampling difficulties, which affect the conclusions of the studies focussed on airborne transmission. One of the reasons for reduced emphasis on airborne transmission could be that the smaller droplets have less number of viruses as compared to larger droplets. Further, smaller droplets can evaporate faster, exposing SARS-CoV-2 within the small droplets to the environment, whose viability may further reduce. For example, these small droplets containing SARS-CoV-2 might also physically combine with or attach to pre-existing PM so that their behaviour and fate may be governed by PM composition. Thus, the measurement of their infectivity and viability is highly uncertain due to a lack of robust sampling system to separately collect virions in the atmosphere. We believe that the present review will help to minimize the gap in our understanding of the current pandemic and develop a robust epidemiological method for mortality assessment.