Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 534(7608): 562-5, 2016 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-27309818

RESUMEN

Fertilization is an essential biological process in sexual reproduction and comprises a series of molecular interactions between the sperm and egg. The fusion of the haploid spermatozoon and oocyte is the culminating event in mammalian fertilization, enabling the creation of a new, genetically distinct diploid organism. The merger of two gametes is achieved through a two-step mechanism in which the sperm protein IZUMO1 on the equatorial segment of the acrosome-reacted sperm recognizes its receptor, JUNO, on the egg surface. This recognition is followed by the fusion of the two plasma membranes. IZUMO1 and JUNO proteins are indispensable for fertilization, as constitutive knockdown of either protein results in mice that are healthy but infertile. Despite their central importance in reproductive medicine, the molecular architectures of these proteins and the details of their functional roles in fertilization are not known. Here we present the crystal structures of human IZUMO1 and JUNO in unbound and bound conformations. The human IZUMO1 structure exhibits a distinct boomerang shape and provides structural insights into the IZUMO family of proteins. Human IZUMO1 forms a high-affinity complex with JUNO and undergoes a major conformational change within its N-terminal domain upon binding to the egg-surface receptor. Our results provide insights into the molecular basis of sperm-egg recognition, cross-species fertilization, and the barrier to polyspermy, thereby promising benefits for the rational development of non-hormonal contraceptives and fertility treatments for humans and other mammals.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Fertilización , Inmunoglobulinas/química , Inmunoglobulinas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas Portadoras/genética , Cristalografía por Rayos X , Proteínas del Huevo , Femenino , Humanos , Inmunoglobulinas/genética , Masculino , Proteínas de la Membrana/genética , Modelos Moleculares , Oocitos/química , Unión Proteica/genética , Conformación Proteica , Receptores de Superficie Celular , Interacciones Espermatozoide-Óvulo , Espermatozoides/química
2.
Nat Commun ; 10(1): 2806, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31243272

RESUMEN

CRISPR-Cas adaptive immune systems function to protect bacteria from invasion by foreign genetic elements. The CRISPR-Cas9 system has been widely adopted as a powerful genome-editing tool, and phage-encoded inhibitors, known as anti-CRISPRs, offer a means of regulating its activity. Here, we report the crystal structures of anti-CRISPR protein AcrIIC2Nme alone and in complex with Nme1Cas9. We demonstrate that AcrIIC2Nme inhibits Cas9 through interactions with the positively charged bridge helix, thereby preventing sgRNA loading. In vivo phage plaque assays and in vitro DNA cleavage assays show that AcrIIC2Nme mediates its activity through a large electronegative surface. This work shows that anti-CRISPR activity can be mediated through the inhibition of Cas9 complex assembly.


Asunto(s)
Bacteriófagos/metabolismo , Proteína 9 Asociada a CRISPR/antagonistas & inhibidores , Sistemas CRISPR-Cas , Ribonucleoproteínas/metabolismo , Proteínas Virales/farmacología , Escherichia coli/metabolismo , Edición Génica , Regulación Bacteriana de la Expresión Génica , Neisseria/virología , Ribonucleoproteínas/genética , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA