Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Microb Pathog ; 189: 106602, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38408546

RESUMEN

The current research was designed to investigate the antibacterial activity of probiotic bacteria mediated cadmium oxide nanoparticles (CdO NPs) on common fish pathogenic bacteria like Serratia marcescens, Aeromonas hydrophila, Vibrio harveyi, and V. parahaemolyticus. CdO NPs were synthesized using probiotic bacteria as follows: Lactobacillus species with different precursor of cadmium sulfate concentrations (5, 10, and 20 mM). The average crystalline sizes of the CdO NPs were determined based on the XRD patterns using the Debye-Scherrer equation for different precursor concentrations. Specifically, sizes of 40, 48, and 67 nm were found at concentrations of 5, 10, and 20 mM, respectively. The antibacterial efficacy of CdO NPs was estimated using a well diffusion assay, which demonstrated the best efficacy of 20 mM CdO NPs against all pathogens. AFM analysis of nanoparticle-treated and untreated biofilms was performed to further validate the antibacterial effect. Antibacterial activity of CdO nanoparticles synthesized at varying concentrations (5, 10, and 20 mM) against fish pathogens (S. marcescens, A. hydrophila, V. harveyi, and V. parahaemolyticus). The results indicated the highest inhibitory effect of 20 mM CdO NPs across all concentrations (30, 60, and 90 µg/mL), demonstrating significant inhibition against S. marcescens. These findings will contribute to the development of novel strategies for combating aquatic diseases and advancing aquaculture health management practices.


Asunto(s)
Compuestos de Cadmio , Nanopartículas del Metal , Nanopartículas , Animales , Óxidos/química , Nanopartículas/química , Antibacterianos/farmacología , Antibacterianos/química , Bacterias , Peces , Nanopartículas del Metal/química
2.
Appl Microbiol Biotechnol ; 108(1): 382, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896329

RESUMEN

Camptothecin (CPT), an indole alkaloid popular for its anticancer property, is considered the third most promising drug after taxol and famous alkaloids from Vinca for the treatment of cancer in humans. Camptothecin was first identified in Camptotheca acuminata followed by several other plant species and endophytic fungi. Increased harvesting driven by rising global demand is depleting the availability of elite plant genotypes, such as Camptotheca acuminata and Nothapodytes nimmoniana, crucial for producing alkaloids used in treating diseases like cancer. Conservation of these genotypes for the future is imperative. Therefore, research on different plant tissue culture techniques such as cell suspension culture, hairy roots, adventitious root culture, elicitation strategies, and endophytic fungi has been adopted for the production of CPT to meet the increasing demand without affecting the source plant's existence. Currently, another strategy to increase camptothecin yield by genetic manipulation is underway. The present review discusses the plants and endophytes that are employed for camptothecin production and throws light on the plant tissue culture techniques for the regeneration of plants, callus culture, and selection of cell lines for the highest camptothecin production. The review further explains the simple, accurate, and cost-effective extraction and quantification methods. There is enormous potential for the sustainable production of CPT which could be met by culturing of suitable endophytes or plant cell or organ culture in a bioreactor scale production. Also, different gene editing tools provide opportunities for engineering the biosynthetic pathway of CPT, and the overall CPT production can be improved . KEY POINTS: • Camptothecin is a naturally occurring alkaloid with potent anticancer properties, primarily known for its ability to inhibit DNA topoisomerase I. • Plants and endophytes offer a potential approach for camptothecin production. • Biotechnology approaches like plant tissue culture techniques enhanced camptothecin production.


Asunto(s)
Biotecnología , Camptotheca , Camptotecina , Endófitos , Camptotecina/biosíntesis , Biotecnología/métodos , Endófitos/metabolismo , Endófitos/genética , Camptotheca/metabolismo , Antineoplásicos Fitogénicos/biosíntesis , Humanos
3.
Int J Med Sci ; 21(4): 593-600, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464834

RESUMEN

Introduction: Broccoli is a cruciferous vegetable that has been shown to have numerous potential therapeutic benefits because of its bioactive compounds. Methods: In this study, we compared the bioactive efficacy of cooked and uncooked (fresh) stems and florets of broccoli extracted with three different solvents: acetonitrile, methanol, and aqueous extracts. The extraction yield and antioxidant and antibacterial potential of different broccoli extracts were examined. Results: Fresh and boiled floret stem extracts increased the extraction yield. The extraction yields were higher for the methanol and acetonitrile extracts than for the aqueous extracts. The antioxidant efficacy of the different extracts was studied using ABTS, DPPH, and metal ion reduction assays. The acetonitrile and aqueous extracts exhibited higher antioxidant activities than the methanolic extracts in different antioxidant assays. In addition, increased antioxidant activity was observed in fresh florets and boiled broccoli stems. TPC and TFC contents were higher in the methanolic extracts than in the aqueous extracts. Similar to antioxidant activities, anti-inflammatory activities were found to be higher in the acetonitrile and aqueous extracts, particularly in boiled stems and fresh florets. Broccoli extracts have been shown to be active against Bacillus subtilis and moderately effective against Pseudomonas aeruginosa and Staphylococcus aureus. Conclusions: Acetonitrile and aqueous extraction of broccoli might be an ideal choice for extraction methods, which show increased extraction yield and antioxidant and anti-inflammatory potentials. Utilization of phytomolecules from natural sources is a promising alternative approach to synthetic drug development.


Asunto(s)
Brassica , Brassica/química , Antioxidantes/química , Metanol/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Agua , Acetonitrilos , Antiinflamatorios
4.
Int J Med Sci ; 21(6): 1016-1026, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774755

RESUMEN

Introduction: Breast cancer results from tissue degradation caused by environmental and genetic factors that affect cells in the body. Matrix metalloproteinases, such as MMP-2 and MMP-9, are considered potential putative markers for tumor diagnosis in clinical validation due to their easy detection in body fluids. In addition, recent reports have suggested multiple roles for MMPs, rather than simply degeneration of the extracellular matrix, which comprises mobilizing growth factors and processing surface molecules. Methods: In this study, the chemotherapeutic effects of anthraquinone (AQ) extracted from edible mushrooms (Pleurotus ostreatus Jacq. ex Fr.) cells was examined in MCF-7 breast cancer cells. The cytotoxic potential and oxidative stress induced by purified anthraquinone were assessed in MCF-7 cells using MTT and ROS estimation assays. Gelatin Zymography, and DNA fragmentation assays were performed to examine MMP expression and apoptotic induction in the MCF-7 cells treated with AQ. The genes crucial for mutations were examined, and the mutated RNA knockout plausibility was analyzed using the CRISPR spcas9 genome editing software. Results: MCF-7 cells were attenuated in a concentration-dependent manner by the administration of AQ purified from P. ostreatus compared with the standard anticancer drug paclitaxel. AQ supplementation decreased oxidative stress and mitochondrial impairment in MCF-7 cells. Treatment with AQ and AQ with paclitaxel consistently decreased the expression of crucial marker genes such as MMP2 and MMP9. The mutated genes MMP2, MMP7, and MMP9 were assessed and observed to reveal four putative gene knockdown potentials for breast cancer treatment. Conclusions: The synergistic application of AQ and paclitaxel exerted a strong inhibitory effect on the MCF-7 breast cancer cells. Extensive studies are imperative to better understand the action of bioactive mixes on the edible oyster fungus P. ostreatus. The gene knockout potential detected by CRISPR SpCas9 will aid in elite research into anticancer treatments.


Asunto(s)
Antraquinonas , Apoptosis , Neoplasias de la Mama , Metaloproteinasa 2 de la Matriz , Metaloproteinasa 9 de la Matriz , Pleurotus , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Antraquinonas/farmacología , Células MCF-7 , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Femenino , Apoptosis/efectos de los fármacos , Apoptosis/genética , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Pleurotus/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
5.
Exp Parasitol ; 258: 108709, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301765

RESUMEN

Mosquitoes stand out as the most perilous and impactful vectors on a global scale, transmitting a multitude of infectious diseases to both humans and other animals. The primary objective of the current research was to assess the effectiveness of EOs from Ocimum tenuiflorum L. and Ocimum americanum L. in controlling Anopheles stephensi Liston. Culex quinquefasciatus Say and Aedes aegypti L. mosquitoes. The larvae, pupae and eggs of the mosquitoes were exposed to four different concentrations (6.25-50 ppm). The tested EOs resulted in >99-100 % mortality at 120 h for the eggs of all examined mosquito species. It also showed robust larvicidal and pupicidal activity with LC50 and LC90 values of 17-39, 23-60 ppm and 46-220, and 73-412 ppm against Aedes, Culex and Anopheles mosquito species, respectively, at 24 h of treatment. The Suitability Index or Predator Safety Factor demonstrated that the EOs extracted from O. tenuiflorum L. and O. americanum L. did not cause harm to P. reticulata, D. indicus (water bug), G. affinis and nymph (dragonfly). GC-MS analysis identified the major probable constituents of the oil, including Phenol, 2-Methoxy-4-(1-Propenyl)- (28.29 %); 1-Methyl-3-(1'-Methylcyclopropyl) Cyclopentene (46.46 %); (E,E,E)-3,7,11,15-Tetramethylhexadeca-1,3,6,10,14-Pentaene (18.91 %) and 1,3-Isobenzofurandione, 3a,4,7,7a-Tetrahydro-4,7-Dimethyl (33.02 %). These constituents may play a significant role in the mosquitocidal activity of the oil. The same results were identified in the formulation prepared from the EOs. This marks the first report confirming the successful utilization of EOs derived from O. tenuiflorum L. and O. americanum L. in mosquito population control initiatives.


Asunto(s)
Aedes , Anopheles , Culex , Insecticidas , Ocimum , Odonata , Aceites Volátiles , Animales , Humanos , Aceites Volátiles/farmacología , Aceites Volátiles/análisis , Ocimum/química , Ocimum sanctum , Mosquitos Vectores , Insecticidas/análisis , Larva , Extractos Vegetales/química , Hojas de la Planta/química
6.
Bioprocess Biosyst Eng ; 47(7): 971-990, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38554183

RESUMEN

The use of nanomaterials in biofuel production from lignocellulosic biomass offers a promising approach to simultaneously address environmental sustainability and economic viability. This review provides an overview of the environmental and economic implications of integrating nanotechnology into biofuel production from low-cost lignocellulosic biomass. In this review, we highlight the potential benefits and challenges of nano-based biofuel production. Nanomaterials provide opportunities to improve feedstock pretreatment, enzymatic hydrolysis, fermentation, and catalysis, resulting in enhanced process efficiency, lower energy consumption, and reduced environmental impact. Conducting life cycle assessments is crucial for evaluating the overall environmental footprint of biofuel production. An economic perspective that focuses on the cost implications of utilizing nanomaterials in biofuel production is also discussed. A comprehensive understanding of both environmental and economic dimensions is essential to fully harness the potential of nanomaterials in biofuel production from lignocellulosic biomass and to move towards sustainable future energy.


Asunto(s)
Biocombustibles , Biomasa , Lignina , Lignina/metabolismo , Lignina/química , Biocombustibles/economía , Nanoestructuras/química , Nanotecnología/economía
7.
Artículo en Inglés | MEDLINE | ID: mdl-38512495

RESUMEN

In the current study, the bottlebrush [Callistemon viminalis (Sol. ex Gaertn.) G. Don] plant was selected for the green synthesis of silver (Ag) and gold (Au) nanoparticles and to evaluate its antibacterial and antifungal activities. Phytochemical screening of C. viminalis confirmed the presence of alkaloids, anthraquinones, saponins, tannins, betacyanins, phlobatanins, coumarins, terpenoids, steroids, glycosides, and proteins. To characterize the synthesized Ag and Au NPs, UV-Visible spectroscopy, FTIR spectroscopy for functional group identification, field emission scanning electron microscopy (FE-SEM) for particle size, and elemental analysis were performed using EDX. The UV-Visible absorption spectra of the green-synthesized Ag and Au nanoparticles were found to have a maximum absorption band at 420 nm for Ag NPs and 525 nm for Au NPs. FE-SEM analysis of the synthesized NPs revealed a circular shape with a size of 100 nm. Elemental analysis was performed for the synthesis of Ag and Au NPs, which confirmed the purity of the nanoparticles. The greenly synthesized Ag and Au NPs were also evaluated for their anti-bacterial and anti-fungal activities, which exhibited prominent inhibition activities against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Candida albicans, C. krusei, Aspergillus sp., and Trichoderma species. The highest zone of inhibition 15.5 ± 0.75 and 15 ± 0.85 mm was observed for Ag NPs against E. coli and P. aeruginosa. Similarly, Trichoderma sp. and Aspergillus sp. were inhibited by Ag NPs up to 13.5 ± 0.95 and 13 ± 0.70 mm. This work will open doors for the development of new antimicrobial agents using green chemistry.

8.
Semin Cancer Biol ; 86(Pt 2): 678-696, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35452820

RESUMEN

Cancer is one of the dreadful diseases worldwide. Surgery, radiation and chemotherapy, are the three basic standard modes of cancer treatment. However, difficulties in cancer treatment are increasing due to immune escape, spreading of cancer to other places, and resistance of cancer cells to therapies. Various signaling mechanisms, including PI3K/Akt/mTOR, RAS, WNT/ß-catenin, TGF-beta, and notch pathways, are involved in cancer resistance. The adaptive inflammatory response is the initial line of defence against infection. However, chronic inflammation can lead to tumorigenesis, malignant transformation, tumor growth, invasion, and metastasis. The most commonly dysregulated inflammatory pathways linked to cancer include NF-κB, MAPK, JAK-STAT, and PI3K/AKT. To overcome major hurdles in cancer therapy, nanomedicine is receiving much attention due to its role as a vehicle for delivering chemotherapeutic agents that specifically target tumor sites. Several biocompatible nanocarriers including polymer and inorganic nanoparticles, liposomes, micellar nanoparticles, nanotubes, and exosomes have been extensively studied. Exosome has been reported as an important potential system that could be effectively used as a bioinspired, bioengineered, and biomimetic drug delivery solution considering its toxicity, immunogenicity, and rapid clearance by the mononuclear phagocyte system. Exosome-mimetic vesicles are receiving much interest for developing nano-sized delivery systems. In this review, exosomes in detail as well as certain other nanocarriers, and their potential therapeutic roles in cancer therapy has been thoroughly discussed. Additionally, we also reviewed on oncogenic and tumor suppressor proteins, inflammation, and their associated signaling pathways and their interference by exosomes based nanomedicine.


Asunto(s)
Exosomas , Neoplasias , Humanos , Nanomedicina , Exosomas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Inflamación/metabolismo
9.
Microb Pathog ; 174: 105940, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36513294

RESUMEN

In biofilm formation, pathogens within the bacterial community coordinate a cell-cell communication system called quorum sensing (QS). This is achieved through various signalling pathways that regulate bacterial virulence and host immune response. Here, we reviewed the host responses, key clinical implications, and novel therapeutic approaches against the biofilms of P. aeruginosa. Given the high degree of intrinsic antibiotic resistance and biofilm formation by the pathogen, the ensuing treatment complications could result in high morbidity and mortality rates worldwide. Notwithstanding the availability of intervention strategies, there remains a paucity of effective therapeutic options to control biofilmogenesis. This review discusses the basic understanding of QS-associated virulence factors and several key therapeutic interventions to foil the biofilm menace of P. aeruginosa.


Asunto(s)
Antibacterianos , Biopelículas , Antibacterianos/farmacología , Percepción de Quorum , Factores de Virulencia/metabolismo , Pseudomonas aeruginosa , Interacciones Huésped-Patógeno , Proteínas Bacterianas/metabolismo
10.
Crit Rev Biotechnol ; 43(6): 956-970, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35819370

RESUMEN

Bacopa monnieri L. Pennell, commonly known as Brahmi, is an important medicinal plant that belongs to the family Plantaginaceae. Brahmi is rich in innumerable bioactive secondary metabolites, especially bacosides that can be employed to reduce many health issues. This plant is used as a neuro-tonic and treatment for mental health, depression, and cognitive performance. Brahmi is also known for its antioxidant, anti-inflammatory, and anti-hepatotoxic activities. There is a huge demand for its raw materials, particularly for the extraction of bioactive molecules. The conventional mode of propagation could not meet the required commercial demand. To overcome this, biotechnological approaches, such as plant tissue culture techniques have been established for the production of important secondary metabolites through various culture techniques, such as callus and cell suspension cultures and organ cultures, to allow for rapid propagation and conservation of medicinally important plants with increased production of bioactive compounds. It has been found that a bioreactor-based technology can also enhance the multiplication rate of cell and organ cultures for commercial propagation of medicinally important bioactive molecules. The present review focuses on the propagation and production of bacoside A by cell and organ cultures of Bacopa monnieri, a nootropic plant. The review also focuses on the biosynthesis of bacoside A, different elicitation strategies, and the over-expression of genes for the production of bacoside-A. It also identifies research gaps that need to be addressed in future studies for the sustainable production of bioactive molecules from B. monnieri.


Asunto(s)
Bacopa , Nootrópicos , Saponinas , Triterpenos , Bacopa/genética , Bacopa/metabolismo , Nootrópicos/metabolismo , Triterpenos/metabolismo , Extractos Vegetales
11.
Mol Cell Biochem ; 478(10): 2141-2171, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36637616

RESUMEN

A trace element, known as a minor element, is a chemical element whose concentration is very low. They are divided into essential and non-essential classes. Numerous physiological and metabolic processes in both plants and animals require essential trace elements. These essential trace elements are so directly related to the metabolic and physiologic processes of the organism that either their excess or deficiency can result in severe bodily malfunction or, in the worst situations, death. Elements can be found in nature in various forms and are essential for the body to carry out its varied functions. Trace elements are crucial for biological, chemical, and molecular cell activity. Nutritional deficits can lead to weakened immunity, increased susceptibility to oral and systemic infections, delayed physical and mental development, and lower productivity. Trace element enzymes are involved in many biological and chemical processes. These compounds act as co-factors for a number of enzymes and serve as centers for stabilizing the structures of proteins and enzymes, allowing them to mediate crucial biological processes. Some trace elements control vital biological processes by attaching to molecules on the cell membrane's receptor site or altering the structure of the membrane to prevent specific molecules from entering the cell. Some trace elements are engaged in redox reactions. Trace elements have two purposes. They are required for the regular stability of cellular structures, but when lacking, they might activate alternate routes and induce disorders. Therefore, thoroughly understanding these trace elements is essential for maintaining optimal health and preventing disease.


Asunto(s)
Oligoelementos , Animales , Humanos
12.
Crit Rev Food Sci Nutr ; 63(6): 827-844, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34319824

RESUMEN

The understanding of gut microbiota has emerged as a significant frontier in development of strategies to maintain normal human body's homeostasis and preventing the disease development over the last decade. The composition of the gut microbiota influences the clinical benefit of immune checkpoints in patients with advanced cancer, but the mechanisms underlying this relationship are unclear. Cancer is among the leading causes of mortality worldwide. So far, there is no universal treatment for cancer and despite significant advances, a lot of improvement on cancer therapy is required. Owing to its role in preserving the host's health and maintaining cellular integrity, the human gut microbiome has recently drawn a lot of interest as a target for cancer treatment. Dietary fiber is fermented by the gut microbiota to generate short-chain fatty acids (SCFAs), such as acetate, butyrate, and propionate, which are physiologically active metabolites. SCFAs can modulate the pathophysiology of the tumor environment through various critical signaling pathways. In addition, SCFAs can bind to carcinogens and other toxic chemicals, thus facilitating their biotransformation and elimination through different excretory mechanisms. This review discusses the mechanisms of action of short-chain fatty acids in modulating hematopoiesis of various immune system cells and the resultant beneficial anti-cancer effects. It also provides future perspectives on cancer therapy.


Asunto(s)
Ácidos Grasos Volátiles , Neoplasias , Humanos , Ácidos Grasos Volátiles/metabolismo , Butiratos/metabolismo , Propionatos/metabolismo , Acetatos , Neoplasias/tratamiento farmacológico , Neoplasias/prevención & control
13.
Crit Rev Food Sci Nutr ; 63(18): 3130-3149, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34606382

RESUMEN

Tea manufactured from the cultivated shoots of Camellia sinensis (L.) O. Kuntze is the most commonly consumed nonalcoholic drink around the world. Tea is an agro-based, environmentally sustainable, labor-intensive, job-generating, and export-oriented industry in many countries. Tea includes phenolic compounds, flavonoids, alkaloids, vitamins, enzymes, crude fibers, protein, lipids, and carbohydrates, among other biochemical constituents. This review described the nature of tea metabolites, their biosynthesis and accumulation with response to various factors. The therapeutic application of various metabolites of tea against microbial diseases, cancer, neurological, and other metabolic disorders was also discussed in detail. The seasonal variation, cultivation practices and genetic variability influence tea metabolite synthesis. Tea biochemical constituents, especially polyphenols and its integral part catechin metabolites, are broadly focused on potential applicability for their action against various diseases. In addition to this, tea also contains bioactive flavonoids that possess health-beneficial effects. The catechin fractions, epigallocatechin 3-gallate and epicatechin 3-gallate, are the main components of tea that has strong antioxidant and medicinal properties. The synergistic function of natural tea metabolites with synthetic drugs provides effective protection against various diseases. Furthermore, the application of nanotechnologies enhanced bioavailability, enhancing the therapeutic potential of natural metabolites against numerous diseases and pathogens.


Asunto(s)
Camellia sinensis , Catequina , Catequina/farmacología , Flavonoides/farmacología , Flavonoides/metabolismo , Polifenoles/análisis , Camellia sinensis/química , Té/química
14.
Crit Rev Food Sci Nutr ; 63(23): 6491-6535, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35164626

RESUMEN

Tropical fruits are defined as fruits that are grown in hot and humid regions within the Tropic of Cancer and Tropic of Capricorn, covering most of the tropical and subtropical areas of Asia, Africa, Central America, South America, the Caribbean and Oceania. Depending on the cultivation area covered, economic value and popularity these tropical fruits are divided into major and minor tropical fruits. There is an annual increment of 3.8% in terms of commercialization of the tropical fruits. In total 26 minor tropical fruits (Kiwifruit, Lutqua, Carambola, Tree Tomato, Elephant apple, Rambutan, Bay berry, Mangosteen, Bhawa, Loquat, Silver berry, Durian, Persimon, Longan, Passion fruit, Water apple, Pulasan, Indian gooseberry, Guava, Lychee, Annona, Pitaya, Sapodilla, Pepino, Jaboticaba, Jackfruit) have been covered in this work. The nutritional composition, phytochemical composition, health benefits, traditional use of these minor tropical fruits and their role in food fortification have been portrayed.


Asunto(s)
Frutas , Malus , Frutas/química , Antioxidantes/análisis , Alimentos Funcionales , Fitoquímicos/análisis
15.
Environ Res ; 238(Pt 1): 117090, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37683791

RESUMEN

The present study is aimed to evaluate pesticidal activity and biocompatibility including ecotoxicity of functionalized silica nanoparticles that synthesized by simple, in vitro, green technology principles. Sol-gel method was adopted for the synthesis of silica nanoparticles and was functionalized by Aminopropyltriethoxysilane (APS), characterized and confirmed the uniform, monodispersive, highly stable particles with the size range of 10-200 nm. The synthesized Nano silica was screened against the developmental stages of Spodoptera litura. Pesticidal study revealed that the functionalized nanoparticles were effective against all the life stages of the insect by recording high mortality and the drastic reduction in the larval, pupae, adult emergence, and adult longevity stages. The ecotoxic effect of synthesized nano-silica was tested on soil parameters, growth parameters of Arachis hypogaea, and compatibility with Trichoderma viride. This study revealed there was no toxic effect on soil, growth parameters of Arachis hypogaea, and most significantly the growth of Trichoderma viride was not inhibited. A biocompatibility study was done by using Zebrafish and Rabbit model. The study divulges there was no toxic effect on all the developmental stages of the Embryo. Further, the nanoparticles did not exhibit any dermatotoxicological effect which confirmed no signs and symptoms of inflammation. Nano-silica emerges as a promising eco-friendly and non-toxic substitute for conventional insecticides. Its utilization has the potential to augment both environmental preservation and economic prosperity on a national scale. Furthermore, the integration of silica-based nanoparticles with biocidal agents demonstrates notable biocompatibility and the capacity to hinder bacterial adhesion.


Asunto(s)
Nanopartículas , Plaguicidas , Animales , Conejos , Dióxido de Silicio/toxicidad , Pez Cebra , Nanopartículas/toxicidad , Suelo
16.
Molecules ; 28(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37375338

RESUMEN

Environmental and biomedical fields have various potential applications for the green synthesis of nanoparticles [...].


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Tecnología Química Verde , Plantas
17.
Saudi Pharm J ; 31(12): 101880, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38075545

RESUMEN

Atherosclerosis is a complex condition that develops at varying rates in multiple configurations and blood vessels. The primary cause of morbidity and mortality worldwide, particularly in the industrialized nations, continues to be atherosclerosis. Ayurveda, Siddha, and Unani systems of medicine, among other traditional medical systems, utilize polyherbal compositions. The treatment of atherosclerosis has been improved with a novel multibotanical combination. In this study, we sought to formulate, characterize, and standardize a polyherbal formulation based on design of experiments (DoE), densitometric studies and to predict for antioxidant activity using molecular docking analysis based on LC- MS identified phytomarkers. In addition we have assessed its cell viability by MTT assay along with Ao/EtBr staining technique and intracellular ROS assay using THP-1 cell lines. Reported findings showed that the HPTLC based quantified components of selected multiherbals has the ability to treat for atherosclerosis. This document could be used to quickly authenticate the formulation as the method optimized was based on CCD design which shows desirability of 0.962 and 0.839. Cell based assays scientifically proves that the formulation was not toxic based on MTT assay along with AO/EtBr staining technique and has excellent antioxidant activities based on intracellular ROS assay using THP-1 cell lines. The observed findings would be crucial for future clinical aspects since the bioactive molecules contained in the extracts may have anticipated effects with other compounds and show a superior therapeutic potential. As a result, this study offers standardized and potentially therapeutic information about effective polyherbal formulation for atherosclerosis.

18.
Semin Cancer Biol ; 69: 109-128, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-31891780

RESUMEN

Breast cancer is one of the most prevalent and reoccurring cancers and the second most common reason of death in women. Despite advancements in therapeutic strategies for breast cancer, early tumor recurrence and metastasis in patients indicate resistance to chemotherapeutic medicines, such as paclitaxel due to the abnormal expression of ER and EGF2 in breast cancer cells. Therefore, the development of alternatives to paclitaxel is urgently needed to overcome challenges involving drug resistance. An increasing number of studies has revealed miRNAs as novel natural alternative substances that play a crucial role in regulating several physiological processes and have a close, adverse association with several diseases, including breast cancer. Due to the therapeutic potential of miRNA and paclitaxel in cancer research, the current review focuses on the differential roles of various miRNAs in breast cancer development and treatment. miRNA delivery to a specific target site, the development of paclitaxel and miRNA formulations, and nanotechnological strategies for the delivery of nanopaclitaxel in the management of breast cancer are discussed. These strategies involve improving the cellular uptake and bioavailability and reducing the toxicity of free paclitaxel to achieve accumulation tumor site. Furthermore, a molecular docking study was performed to ascertain the enhanced anticancer activity of the nanoformulation of ANG1005 and Abraxane. An in silico analysis revealed that ANG1005 and Abraxane nanoformulations have superior and significantly enhanced interactions with the proteins α-tubulin and Bcl-2. Therefore, ANG1005 and Abraxane may be more suitable in the therapeutic management of breast cancer than the existing free paclitaxel. miRNAs can revert abnormal gene expression to normalcy; since miRNAs serve as tumor suppressors. Therefore, restoration of particular miRNAs levels as a replacement therapy may be an effective endocrine potential strategy for treating ER positive/ negative breast cancers.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , MicroARNs/genética , Nanopartículas/administración & dosificación , Nanotecnología/métodos , Paclitaxel/análogos & derivados , Péptidos/administración & dosificación , Receptores de Estrógenos/metabolismo , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/química , Neoplasias de la Mama/patología , Simulación por Computador , Manejo de la Enfermedad , Resistencia a Antineoplásicos , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Simulación del Acoplamiento Molecular , Nanopartículas/química , Paclitaxel/administración & dosificación , Paclitaxel/química , Péptidos/química
19.
Crit Rev Food Sci Nutr ; : 1-55, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35816152

RESUMEN

From the ancient period, Green leafy vegetables (GLV) are part of the daily diet and were believed to have several health beneficial properties. Later it has been proved that GLV has outstanding nutritional value and can be used for medicinal benefits. GLV is particularly rich in minerals like iron, calcium, and zinc. These are also rich in vitamins like beta carotene, vitamin E, K, B and vitamin C. In addition, some anti-nutritional elements in GLV can be reduced if it is grown properly and processed properly before consumption. Tropical countries have a wide variety of these green plants such as Red Spinach, Amaranth, Malabar Spinach, Taro Leaf, Fenugreek leaf, Bengal Gram Leaves, Radish Leaves, Mustard Leaves, and many more. This review focuses on listing this wide range of GLVs (in total 54 underutilized GLVs) and their compositions in a comparative manner. GLV also possesses medicinal activities due to its rich bioactive and nutritional potential. Different processing techniques may alter the nutritional and bioactive potential of the GLVs significantly. The GLVs have been considered a food fortification agent, though not explored widely. All of these findings suggest that increasing GLV consumption could provide nutritional requirements necessary for proper growth as well as adequate protection against diseases caused by malnutrition.

20.
Crit Rev Food Sci Nutr ; : 1-33, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35972148

RESUMEN

Beetroot is rich in various bioactive phytochemicals, which are beneficial for human health and exert protective effects against several disease conditions like cancer, atherosclerosis, etc. Beetroot has various therapeutic applications, including antioxidant, antibacterial, antiviral, and analgesic functions. Besides the pharmacological effects, food industries are trying to preserve beetroots or their phytochemicals using various food preservation methods, including drying and freezing, to preserve their antioxidant capacity. Beetroot is a functional food due to valuable active components such as minerals, amino acids, phenolic acid, flavonoid, betaxanthin, and betacyanin. Due to its stability, nontoxic and non-carcinogenic and nonpoisonous capabilities, beetroot has been used as an additive or preservative in food processing. Beetroot and its bioactive compounds are well reported to possess antioxidant, anti-inflammatory, antiapoptotic, antimicrobial, antiviral, etc. In this review, we provided updated details on (i) food processing, preservation and colorant methods using beetroot and its phytochemicals, (ii) synthesis and development of several nanoparticles using beetroot and its bioactive compounds against various diseases, (iii) the role of beetroot and its phytochemicals under disease conditions with molecular mechanisms. We have also discussed the role of other phytochemicals in beetroot and their health benefits. Recent technologies in food processing are also updated. We also addressed on molecular docking-assisted biological activity and screening for bioactive chemicals. Additionally, the role of betalain from different sources and its therapeutic effects have been listed. To the best of our knowledge, little or no work has been carried out on the impact of beetroot and its nanoformulation strategies for phytocompounds on antimicrobial, antiviral effects, etc. Moreover, epigenetic alterations caused by phytocompounds of beetroot under several diseases were not reported much. Thus, extensive research must be carried out to understand the molecular effects of beetroot in the near future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA