Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Br J Cancer ; 130(4): 620-627, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38135714

RESUMEN

OBJECTIVE: Current breast cancer risk prediction scores and algorithms can potentially be further improved by including molecular markers. To this end, we studied the association of circulating plasma proteins using Proximity Extension Assay (PEA) with incident breast cancer risk. SUBJECTS: In this study, we included 1577 women participating in the prospective KARMA mammographic screening cohort. RESULTS: In a targeted panel of 164 proteins, we found 8 candidates nominally significantly associated with short-term breast cancer risk (P < 0.05). Similarly, in an exploratory panel consisting of 2204 proteins, 115 were found nominally significantly associated (P < 0.05). However, none of the identified protein levels remained significant after adjustment for multiple testing. This lack of statistically significant findings was not due to limited power, but attributable to the small effect sizes observed even for nominally significant proteins. Similarly, adding plasma protein levels to established risk factors did not improve breast cancer risk prediction accuracy. CONCLUSIONS: Our results indicate that the levels of the studied plasma proteins captured by the PEA method are unlikely to offer additional benefits for risk prediction of short-term overall breast cancer risk but could provide interesting insights into the biological basis of breast cancer in the future.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/diagnóstico , Estudios Prospectivos , Proteómica , Mamografía/métodos , Factores de Riesgo , Proteínas Sanguíneas
2.
Nat Rev Genet ; 17(10): 615-29, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27498692

RESUMEN

The co-occurrence of diseases can inform the underlying network biology of shared and multifunctional genes and pathways. In addition, comorbidities help to elucidate the effects of external exposures, such as diet, lifestyle and patient care. With worldwide health transaction data now often being collected electronically, disease co-occurrences are starting to be quantitatively characterized. Linking network dynamics to the real-life, non-ideal patient in whom diseases co-occur and interact provides a valuable basis for generating hypotheses on molecular disease mechanisms, and provides knowledge that can facilitate drug repurposing and the development of targeted therapeutic strategies.


Asunto(s)
Comorbilidad , Biología Computacional/métodos , Enfermedad/genética , Redes y Vías Metabólicas , Humanos , Biología de Sistemas/métodos
3.
PLoS Med ; 17(6): e1003149, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32559194

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is highly prevalent and causes serious health complications in individuals with and without type 2 diabetes (T2D). Early diagnosis of NAFLD is important, as this can help prevent irreversible damage to the liver and, ultimately, hepatocellular carcinomas. We sought to expand etiological understanding and develop a diagnostic tool for NAFLD using machine learning. METHODS AND FINDINGS: We utilized the baseline data from IMI DIRECT, a multicenter prospective cohort study of 3,029 European-ancestry adults recently diagnosed with T2D (n = 795) or at high risk of developing the disease (n = 2,234). Multi-omics (genetic, transcriptomic, proteomic, and metabolomic) and clinical (liver enzymes and other serological biomarkers, anthropometry, measures of beta-cell function, insulin sensitivity, and lifestyle) data comprised the key input variables. The models were trained on MRI-image-derived liver fat content (<5% or ≥5%) available for 1,514 participants. We applied LASSO (least absolute shrinkage and selection operator) to select features from the different layers of omics data and random forest analysis to develop the models. The prediction models included clinical and omics variables separately or in combination. A model including all omics and clinical variables yielded a cross-validated receiver operating characteristic area under the curve (ROCAUC) of 0.84 (95% CI 0.82, 0.86; p < 0.001), which compared with a ROCAUC of 0.82 (95% CI 0.81, 0.83; p < 0.001) for a model including 9 clinically accessible variables. The IMI DIRECT prediction models outperformed existing noninvasive NAFLD prediction tools. One limitation is that these analyses were performed in adults of European ancestry residing in northern Europe, and it is unknown how well these findings will translate to people of other ancestries and exposed to environmental risk factors that differ from those of the present cohort. Another key limitation of this study is that the prediction was done on a binary outcome of liver fat quantity (<5% or ≥5%) rather than a continuous one. CONCLUSIONS: In this study, we developed several models with different combinations of clinical and omics data and identified biological features that appear to be associated with liver fat accumulation. In general, the clinical variables showed better prediction ability than the complex omics variables. However, the combination of omics and clinical variables yielded the highest accuracy. We have incorporated the developed clinical models into a web interface (see: https://www.predictliverfat.org/) and made it available to the community. TRIAL REGISTRATION: ClinicalTrials.gov NCT03814915.


Asunto(s)
Hígado Graso/etiología , Aprendizaje Automático , Complicaciones de la Diabetes/etiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Estudios Prospectivos , Reproducibilidad de los Resultados , Medición de Riesgo
4.
Nucleic Acids Res ; 41(Web Server issue): W104-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23703204

RESUMEN

MetaRanker 2.0 is a web server for prioritization of common and rare frequency genetic variation data. Based on heterogeneous data sets including genetic association data, protein-protein interactions, large-scale text-mining data, copy number variation data and gene expression experiments, MetaRanker 2.0 prioritizes the protein-coding part of the human genome to shortlist candidate genes for targeted follow-up studies. MetaRanker 2.0 is made freely available at www.cbs.dtu.dk/services/MetaRanker-2.0.


Asunto(s)
Variación Genética , Programas Informáticos , Variaciones en el Número de Copia de ADN , Minería de Datos , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Internet , Mapeo de Interacción de Proteínas , Transcriptoma
5.
Cell Rep Med ; 3(1): 100477, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35106505

RESUMEN

The presentation and underlying pathophysiology of type 2 diabetes (T2D) is complex and heterogeneous. Recent studies attempted to stratify T2D into distinct subgroups using data-driven approaches, but their clinical utility may be limited if categorical representations of complex phenotypes are suboptimal. We apply a soft-clustering (archetype) method to characterize newly diagnosed T2D based on 32 clinical variables. We assign quantitative clustering scores for individuals and investigate the associations with glycemic deterioration, genetic risk scores, circulating omics biomarkers, and phenotypic stability over 36 months. Four archetype profiles represent dysfunction patterns across combinations of T2D etiological processes and correlate with multiple circulating biomarkers. One archetype associated with obesity, insulin resistance, dyslipidemia, and impaired ß cell glucose sensitivity corresponds with the fastest disease progression and highest demand for anti-diabetic treatment. We demonstrate that clinical heterogeneity in T2D can be mapped to heterogeneity in individual etiological processes, providing a potential route to personalized treatments.


Asunto(s)
Diabetes Mellitus Tipo 2/diagnóstico , Adulto , Diabetes Mellitus Tipo 2/genética , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Predisposición Genética a la Enfermedad , Genómica , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Factores de Riesgo
6.
EBioMedicine ; 57: 102854, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32629387

RESUMEN

BACKGROUND: Precision medicine approaches aim to tackle diseases on an individual level through molecular profiling. Despite the growing knowledge about diseases and the reported diversity of molecular phenotypes, the descriptions of human health on an individual level have been far less elaborate. METHODS: To provide insights into the longitudinal protein signatures of well-being, we profiled blood plasma collected over one year from 101 clinically healthy individuals using multiplexed antibody assays. After applying an antibody validation scheme, we utilized > 700 protein profiles for in-depth analyses of the individuals' short-term health trajectories. FINDINGS: We found signatures of circulating proteomes to be highly individual-specific. Considering technical and longitudinal variability, we observed that 49% of the protein profiles were stable over one year. We also identified eight networks of proteins in which 11-242 proteins covaried over time. For each participant, there were unique protein profiles of which some could be explained by associations to genetic variants. INTERPRETATION: This observational and non-interventional study identifyed noticeable diversity among clinically healthy subjects, and facets of individual-specific signatures emerged by monitoring the variability of the circulating proteomes over time. To enable more personal hence precise assessments of health states, longitudinal profiling of circulating proteomes can provide a valuable component for precision medicine approaches. FUNDING: This work was supported by the Erling Persson Foundation, the Swedish Heart and Lung Foundation, the Knut and Alice Wallenberg Foundation, Science for Life Laboratory, and the Swedish Research Council.


Asunto(s)
Proteínas Sanguíneas/genética , Medicina de Precisión , Proteoma/genética , Proteómica , Adulto , Anticuerpos , Femenino , Perfilación de la Expresión Génica , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Suecia/epidemiología
7.
Life Sci Alliance ; 3(10)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32737166

RESUMEN

Despite recognizing aging as a common risk factor of many human diseases, little is known about its molecular traits. To identify age-associated proteins circulating in human blood, we screened 156 individuals aged 50-92 using exploratory and multiplexed affinity proteomics assays. Profiling eight additional study sets (N = 3,987), performing antibody validation, and conducting a meta-analysis revealed a consistent age association (P = 6.61 × 10-6) for circulating histidine-rich glycoprotein (HRG). Sequence variants of HRG influenced how the protein was recognized in the immunoassays. Indeed, only the HRG profiles affected by rs9898 were associated with age and predicted the risk of mortality (HR = 1.25 per SD; 95% CI = 1.12-1.39; P = 6.45 × 10-5) during a follow-up period of 8.5 yr after blood sampling (IQR = 7.7-9.3 yr). Our affinity proteomics analysis found associations between the particular molecular traits of circulating HRG with age and all-cause mortality. The distinct profiles of this multipurpose protein could serve as an accessible and informative indicator of the physiological processes related to biological aging.


Asunto(s)
Envejecimiento/fisiología , Proteínas/análisis , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Femenino , Estudios de Seguimiento , Humanos , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , Unión Proteica , Proteínas/genética , Proteínas/metabolismo , Proteómica/métodos
8.
Genome Med ; 12(1): 109, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33261667

RESUMEN

BACKGROUND: The rising prevalence of type 2 diabetes (T2D) poses a major global challenge. It remains unresolved to what extent transcriptomic signatures of metabolic dysregulation and T2D can be observed in easily accessible tissues such as blood. Additionally, large-scale human studies are required to further our understanding of the putative inflammatory component of insulin resistance and T2D. Here we used transcriptomics data from individuals with (n = 789) and without (n = 2127) T2D from the IMI-DIRECT cohorts to describe the co-expression structure of whole blood that mainly reflects processes and cell types of the immune system, and how it relates to metabolically relevant clinical traits and T2D. METHODS: Clusters of co-expressed genes were identified in the non-diabetic IMI-DIRECT cohort and evaluated with regard to stability, as well as preservation and rewiring in the cohort of individuals with T2D. We performed functional and immune cell signature enrichment analyses, and a genome-wide association study to describe the genetic regulation of the modules. Phenotypic and trans-omics associations of the transcriptomic modules were investigated across both IMI-DIRECT cohorts. RESULTS: We identified 55 whole blood co-expression modules, some of which clustered in larger super-modules. We identified a large number of associations between these transcriptomic modules and measures of insulin action and glucose tolerance. Some of the metabolically linked modules reflect neutrophil-lymphocyte ratio in blood while others are independent of white blood cell estimates, including a module of genes encoding neutrophil granule proteins with antibacterial properties for which the strongest associations with clinical traits and T2D status were observed. Through the integration of genetic and multi-omics data, we provide a holistic view of the regulation and molecular context of whole blood transcriptomic modules. We furthermore identified an overlap between genetic signals for T2D and co-expression modules involved in type II interferon signaling. CONCLUSIONS: Our results offer a large-scale map of whole blood transcriptomic modules in the context of metabolic disease and point to novel biological candidates for future studies related to T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Fenotipo , Transcriptoma , Estudios de Cohortes , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Insulina , Resistencia a la Insulina , Leucocitos
9.
BMC Med Genomics ; 8: 58, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26429708

RESUMEN

BACKGROUND: A substantial proportion of cancer cases present with a metastatic tumor and require further testing to determine the primary site; many of these are never fully diagnosed and remain cancer of unknown primary origin (CUP). It has been previously demonstrated that the somatic point mutations detected in a tumor can be used to identify its site of origin with limited accuracy. We hypothesized that higher accuracy could be achieved by a classification algorithm based on the following feature sets: 1) the number of nonsynonymous point mutations in a set of 232 specific cancer-associated genes, 2) frequencies of the 96 classes of single-nucleotide substitution determined by the flanking bases, and 3) copy number profiles, if available. METHODS: We used publicly available somatic mutation data from the COSMIC database to train random forest classifiers to distinguish among those tissues of origin for which sufficient data was available. We selected feature sets using cross-validation and then derived two final classifiers (with or without copy number profiles) using 80 % of the available tumors. We evaluated the accuracy using the remaining 20 %. For further validation, we assessed accuracy of the without-copy-number classifier on three independent data sets: 1669 newly available public tumors of various types, a cohort of 91 breast metastases, and a set of 24 specimens from 9 lung cancer patients subjected to multiregion sequencing. RESULTS: The cross-validation accuracy was highest when all three types of information were used. On the left-out COSMIC data not used for training, we achieved a classification accuracy of 85 % across 6 primary sites (with copy numbers), and 69 % across 10 primary sites (without copy numbers). Importantly, a derived confidence score could distinguish tumors that could be identified with 95 % accuracy (32 %/75 % of tumors with/without copy numbers) from those that were less certain. Accuracy in the independent data sets was 46 %, 53 % and 89 % respectively, similar to the accuracy expected from the training data. CONCLUSIONS: Identification of primary site from point mutation and/or copy number data may be accurate enough to aid clinical diagnosis of cancers of unknown primary origin.


Asunto(s)
Neoplasias de la Mama/genética , Bases de Datos Genéticas , Genes Relacionados con las Neoplasias , Neoplasias Pulmonares/genética , Mutación Puntual , Polimorfismo de Nucleótido Simple , Femenino , Humanos , Masculino , Especificidad de Órganos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA