Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 26(3)2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33504099

RESUMEN

Antibiotic resistance is a growing concern that is driving the exploration of alternative ways of killing bacteria. Here we show that gold nanoparticles synthesized by the mycelium of Mucor plumbeus are an effective medium for antimicrobial photodynamic therapy (PDT). These particles are spherical in shape, uniformly distributed without any significant agglomeration, and show a single plasmon band at 522-523 nm. The nanoparticle sizes range from 13 to 25 nm, and possess an average size of 17 ± 4 nm. In PDT, light (from a source consisting of nine LEDs with a peak wavelength of 640 nm and FWMH 20 nm arranged in a 3 × 3 array), a photosensitiser (methylene blue), and oxygen are used to kill undesired cells. We show that the biogenic nanoparticles enhance the effectiveness of the photosensitiser, methylene blue, and so can be used to kill both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The enhanced effectiveness means that we could kill these bacteria with a simple, small LED-based light source. We show that the biogenic gold nanoparticles prevent fast photobleaching, thereby enhancing the photoactivity of the methylene blue (MB) molecules and their bactericidal effect.


Asunto(s)
Antiinfecciosos/química , Oro/química , Nanopartículas del Metal/química , Azul de Metileno/química , Fotoblanqueo/efectos de los fármacos , Fotoquimioterapia/métodos , Antiinfecciosos/farmacología , Farmacorresistencia Microbiana/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Mucor/química , Micelio/química , Oxígeno/química , Tamaño de la Partícula , Fármacos Fotosensibilizantes/química , Staphylococcus aureus/efectos de los fármacos
2.
Hear Res ; 440: 108911, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37977051

RESUMEN

For individuals with severe to profound hearing loss resulting from irreversibly damaged hair cells, cochlear implants can be used to restore hearing by delivering electrical stimulation directly to the spiral ganglion neurons. However, current spread lowers the spatial resolution of neural activation. Since light can be easily confined, optogenetics is a technique that has the potential to improve the precision of neural activation, whereby visible light is used to stimulate neurons that are modified with light-sensitive opsins. This study compares the spread of neural activity across the inferior colliculus of the auditory midbrain during electrical and optical stimulation in the cochlea of acutely deafened mice with opsin-modified spiral ganglion neurons (H134R variant of the channelrhodopsin-2). Monopolar electrical stimulation was delivered via each of four 0.2 mm wide platinum electrode rings at 0.6 mm centre-to-centre spacing, whereas 453 nm wavelength light was delivered via each of five 0.22 × 0.27 mm micro-light emitting diodes (LEDs) at 0.52 mm centre-to-centre spacing. Channel interactions were also quantified by threshold changes during simultaneous stimulation by pairs of electrodes or micro-LEDs at different distances between the electrodes (0.6, 1.2 and 1.8 mm) or micro-LEDs (0.52, 1.04, 1.56 and 2.08 mm). The spread of activation resulting from single channel optical stimulation was approximately half that of monopolar electrical stimulation as measured at two levels of discrimination above threshold (p<0.001), whereas there was no significant difference between optical stimulation in opsin-modified deafened mice and pure tone acoustic stimulation in normal-hearing mice. During simultaneous micro-LED stimulation, there were minimal channel interactions for all micro-LED spacings tested. For neighbouring micro-LEDs/electrodes, the relative influence on threshold was 13-fold less for optical stimulation compared electrical stimulation (p<0.05). The outcomes of this study show that the higher spatial precision of optogenetic stimulation results in reduced channel interaction compared to electrical stimulation, which could increase the number of independent channels in a cochlear implant. Increased spatial resolution and the ability to activate more than one channel simultaneously could lead to better speech perception in cochlear implant recipients.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Sordera , Ratones , Animales , Optogenética/métodos , Cóclea/fisiología , Opsinas/genética , Estimulación Eléctrica , Sordera/terapia , Sordera/cirugía
3.
Front Neurosci ; 17: 1190662, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37360169

RESUMEN

Introduction: Electrical stimulation offers a drug-free alternative for the treatment of many neurological conditions, such as chronic pain. However, it is not easy to selectively activate afferent or efferent fibers of mixed nerves, nor their functional subtypes. Optogenetics overcomes these issues by controlling activity selectively in genetically modified fibers, however the reliability of responses to light are poor compared to electrical stimulation and the high intensities of light required present considerable translational challenges. In this study we employed a combined protocol of optical and electrical stimulation to the sciatic nerve in an optogenetic mouse model to allow for better selectivity, efficiency, and safety to overcome fundamental limitations of electrical-only and optical-only stimulation. Methods: The sciatic nerve was surgically exposed in anesthetized mice (n = 12) expressing the ChR2-H134R opsin via the parvalbumin promoter. A custom-made peripheral nerve cuff electrode and a 452 nm laser-coupled optical fiber were used to elicit neural activity utilizing optical-only, electrical-only, or combined stimulation. Activation thresholds for the individual and combined responses were measured. Results: Optically evoked responses had a conduction velocity of 34.3 m/s, consistent with ChR2-H134R expression in proprioceptive and low-threshold mechanoreceptor (Aα/Aß) fibers which was also confirmed via immunohistochemical methods. Combined stimulation, utilizing a 1 ms near-threshold light pulse followed by an electrical pulse 0.5 ms later, approximately halved the electrical threshold for activation (p = 0.006, n = 5) and resulted in a 5.5 dB increase in the Aα/Aß hybrid response amplitude compared to the electrical-only response at equivalent electrical levels (p = 0.003, n = 6). As a result, there was a 3.25 dB increase in the therapeutic stimulation window between the Aα/Aß fiber and myogenic thresholds (p = 0.008, n = 4). Discussion: The results demonstrate that light can be used to prime the optogenetically modified neural population to reside near threshold, thereby selectively reducing the electrical threshold for neural activation in these fibers. This reduces the amount of light needed for activation for increased safety and reduces potential off-target effects by only stimulating the fibers of interest. Since Aα/Aß fibers are potential targets for neuromodulation in chronic pain conditions, these findings could be used to develop effective strategies to selectively manipulate pain transmission pathways in the periphery.

4.
Sci Rep ; 11(1): 11229, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34045604

RESUMEN

Optical stimulation is a paradigm-shifting approach to modulating neural activity that has the potential to overcome the issue of current spread that occurs with electrical stimulation by providing focused stimuli. But optical stimulation either requires high power infrared light or genetic modification of neurons to make them responsive to lower power visible light. This work examines optical activation of auditory neurons following optogenetic modification via AAV injection in two species (mouse and guinea pig). An Anc80 viral vector was used to express the channelrhodopsin variant ChR2-H134R fused to a fluorescent reporter gene under the control of the human synapsin-1 promoter. The AAV was administered directly to the cochlea (n = 33) or posterior semi-circular canal of C57BL/6 mice (n = 4) or to guinea pig cochleae (n = 6). Light (488 nm), electrical stimuli or the combination of these (hybrid stimulation) was delivered to the cochlea via a laser-coupled optical fibre and co-located platinum wire. Activation thresholds, spread of activation and stimulus interactions were obtained from multi-unit recordings from the central nucleus of the inferior colliculus of injected mice, as well as ChR2-H134R transgenic mice (n = 4). Expression of ChR2-H134R was examined by histology. In the mouse, transduction of auditory neurons by the Anc80 viral vector was most successful when injected at a neonatal age with up to 89% of neurons transduced. Auditory neuron transductions were not successful in guinea pigs. Inferior colliculus responses to optical stimuli were detected in a cochleotopic manner in all mice with ChR2-H134R expression. There was a significant correlation between lower activation thresholds in mice and higher proportions of transduced neurons. There was no difference in spread of activation between optical stimulation and electrical stimulation provided by the light/electrical delivery system used here (optical fibre with bonded 25 µm platinum/iridium wire). Hybrid stimulation, comprised of sub-threshold optical stimulation to 'prime' or raise the excitability of the neurons, lowered the threshold for electrical activation in most cases, but the impact on excitation width was more variable compared to transgenic mice. This study demonstrates the impact of opsin expression levels and expression pattern on optical and hybrid stimulation when considering optical or hybrid stimulation techniques for neuromodulation.


Asunto(s)
Cóclea/metabolismo , Neuronas/metabolismo , Opsinas/metabolismo , Estimulación Acústica , Animales , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Estimulación Eléctrica , Vectores Genéticos , Cobayas , Ratones , Opsinas/genética , Optogenética/métodos
5.
J Neural Eng ; 17(5): 056046, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33036009

RESUMEN

OBJECTIVE: Compared to electrical stimulation, optogenetic stimulation has the potential to improve the spatial precision of neural activation in neuroprostheses, but it requires intense light and has relatively poor temporal kinetics. We tested the effect of hybrid stimulation, which is the combination of subthreshold optical and electrical stimuli, on spectral and temporal fidelity in the cochlea by recording multiunit activity in the inferior colliculus of channelrhodopsin (H134R variant) transgenic mice. APPROACH: Pulsed light or biphasic electrical pulses were delivered to cochlear spiral ganglion neurons of acutely deafened mice, either as individual stimuli or as hybrid stimuli for which the timing of the electrical pulse had a varied delay relative to the start of the optical pulse. Response thresholds, spread of activation and entrainment data were obtained from multi-unit recordings from the auditory midbrain. MAIN RESULTS: Facilitation occurred when subthreshold electrical stimuli were applied at the end of, or up to 3.75 ms after subthreshold optical pulses. The spread of activation resulting from hybrid stimulation was significantly narrower than electrical-only and optical-only stimulation (p < 0.01), measured at equivalent suprathreshold levels of loudness that are relevant to cochlear implant users. Furthermore, temporal fidelity, measured as maximum following rates to 300 ms pulse trains bursts up to 240 Hz, was 2.4-fold greater than optical-only stimulation (p < 0.05). SIGNIFICANCE: By significantly improving spectral resolution of electrical- and optical-only stimulation and the temporal fidelity of optical-only stimulation, hybrid stimulation has the potential to increase the number of perceptually independent stimulating channels in a cochlear implant.


Asunto(s)
Implantes Cocleares , Sordera , Estimulación Acústica , Animales , Cóclea , Estimulación Eléctrica , Ratones , Optogenética , Ganglio Espiral de la Cóclea
6.
J Neural Eng ; 17(1): 016069, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31923907

RESUMEN

OBJECTIVE: The performance of neuroprostheses, including cochlear and retinal implants, is currently constrained by the spatial resolution of electrical stimulation. Optogenetics has improved the spatial control of neurons in vivo but lacks the fast-temporal dynamics required for auditory and retinal signalling. The objective of this study is to demonstrate that combining optical and electrical stimulation in vitro could address some of the limitations associated with each of the stimulus modes when used independently. APPROACH: The response of murine auditory neurons expressing ChR2-H134 to combined optical and electrical stimulation was characterised using whole cell patch clamp electrophysiology. MAIN RESULTS: Optogenetic costimulation produces a three-fold increase in peak firing rate compared to optical stimulation alone and allows spikes to be evoked by combined subthreshold optical and electrical inputs. Subthreshold optical depolarisation also facilitated spiking in auditory neurons for periods of up to 30 ms without evidence of wide-scale Na+ inactivation. SIGNIFICANCE: These findings may contribute to the development of spatially and temporally selective optogenetic-based neuroprosthetics and complement recent developments in 'fast opsins'.


Asunto(s)
Estimulación Acústica/métodos , Vías Auditivas/fisiología , Nervio Coclear/fisiología , Prótesis Neurales , Optogenética/métodos , Potenciales de Acción/fisiología , Animales , Implantes Auditivos de Tronco Encefálico , Vías Auditivas/química , Células Cultivadas , Nervio Coclear/química , Estimulación Eléctrica/métodos , Ratones , Ratones de la Cepa 129 , Ratones Transgénicos , Optogenética/instrumentación
7.
Mol Microbiol ; 65(4): 995-1005, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17683397

RESUMEN

In prokaryotes, DNA replication is initiated by the binding of DnaA to the oriC region of the chromosome to load the primosome machinery and start a new replication round. Several proteins control these events in Escherichia coli to ensure that replication is precisely timed during the cell cycle. Here, we report the crystal structure of HobA (HP1230) at 1.7 A, a recently discovered protein that specifically interacts with DnaA protein from Helicobacter pylori (HpDnaA). We found that the closest structural homologue of HobA is a sugar isomerase (SIS) domain containing protein, the phosphoheptose isomerase from Pseudomonas aeruginosa. Remarkably, SIS proteins share strong sequence homology with DiaA from E. coli; yet, HobA and DiaA share no sequence homology. Thus, by solving the structure of HobA, we unexpectedly discovered that HobA is a H. pylori structural homologue of DiaA. By comparing the structure of HobA to a homology model of DiaA, we identified conserved, surface-accessible residues that could be involved in protein-protein interaction. Finally, we show that HobA specifically interacts with the N-terminal part of HpDnaA. The structural homology between DiaA and HobA strongly supports their involvement in the replication process and these proteins could define a new structural family of replication regulators in bacteria.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Portadoras/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/química , Helicobacter pylori/química , Homología Estructural de Proteína , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Calcio/metabolismo , Secuencia Conservada , Cristalografía por Rayos X , Dimerización , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA