Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 165(7): 1632-1643, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27315480

RESUMEN

Ligand-directed signal bias offers opportunities for sculpting molecular events, with the promise of better, safer therapeutics. Critical to the exploitation of signal bias is an understanding of the molecular events coupling ligand binding to intracellular signaling. Activation of class B G protein-coupled receptors is driven by interaction of the peptide N terminus with the receptor core. To understand how this drives signaling, we have used advanced analytical methods that enable separation of effects on pathway-specific signaling from those that modify agonist affinity and mapped the functional consequence of receptor modification onto three-dimensional models of a receptor-ligand complex. This yields molecular insights into the initiation of receptor activation and the mechanistic basis for biased agonism. Our data reveal that peptide agonists can engage different elements of the receptor extracellular face to achieve effector coupling and biased signaling providing a foundation for rational design of biased agonists.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/química , Péptidos/farmacología , Ponzoñas/farmacología , Animales , Células CHO , Calcio/metabolismo , Línea Celular , Cricetulus , AMP Cíclico/metabolismo , Exenatida , Receptor del Péptido 1 Similar al Glucagón/genética , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Oxintomodulina/química , Oxintomodulina/metabolismo , Péptidos/química , Ratas , Transducción de Señal , Ponzoñas/química
2.
Proc Natl Acad Sci U S A ; 120(36): e2306414120, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37643213

RESUMEN

Targeted inhibitors of bromodomain and extraterminal (BET)-bromodomains and phosphatidylinositol-3-kinase (PI3K) signaling demonstrate potent but self-limited antilymphoma activity as single agents in the context of cellular Myelocytomatosis (cMYC) oncogene-dysregulation. However, combined PI3K and BET inhibition imparts synergistic anticancer activity with the potential for more sustained disease responses due to the mutual antagonism of compensatory epigenetic and signaling networks. Here, we describe the mechanistic and therapeutic validation of rationally designed dual PI3K/BET bromodomain inhibitors, built by linkage of established PI3K and BET inhibitor pharmacophores. The lead candidate demonstrates high selectivity, nanomolar range cellular potency, and compelling in vivo efficacy, including curative responses in the aggressive Eµ-Myc lymphoma model. These studies further support the therapeutic strategy of combined PI3K and BET inhibition and provide a potential step-change in approach to orthogonal MYC antagonism using optimized chimeric small-molecule technology.


Asunto(s)
Linfoma , Fosfatidilinositol 3-Quinasas , Humanos , Fosfatidilinositol 3-Quinasa , Agresión , Epigenómica , Linfoma/tratamiento farmacológico , Inhibidores de las Quinasa Fosfoinosítidos-3
3.
Biol Chem ; 405(5): 351-365, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38410910

RESUMEN

Proteases function within sophisticated networks. Altering the activity of one protease can have sweeping effects on other proteases, leading to changes in their activity, structure, specificity, localisation, stability, and expression. Using a suite of chemical tools, we investigated the impact of cathepsin X, a lysosomal cysteine protease, on the activity and expression of other cysteine proteases and their inhibitors in dendritic cells. Among all proteases examined, cathepsin X gene deletion specifically altered cathepsin L levels; pro-cathepsin L and its single chain accumulated while the two-chain form was unchanged. This effect was recapitulated by chemical inhibition of cathepsin X, suggesting a dependence on its catalytic activity. We demonstrated that accumulation of pro- and single chain cathepsin L was not due to a lack of direct cleavage by cathepsin X or altered glycosylation, secretion, or mRNA expression but may result from changes in lysosomal oxidative stress or pH. In the absence of active cathepsin X, nuclear cathepsin L and cleavage of the known nuclear cathepsin L substrate, Lamin B1, were diminished. Thus, cathepsin X activity selectively regulates cathepsin L, which has the potential to impact the degree of cathepsin L proteolysis, the nature of substrates that it cleaves, and the location of cleavage.


Asunto(s)
Catepsina L , Catepsina L/metabolismo , Catepsina L/deficiencia , Catepsina L/genética , Animales , Ratones , Núcleo Celular/metabolismo , Especificidad por Sustrato , Ratones Noqueados , Células Dendríticas/metabolismo
4.
BMC Biol ; 20(1): 73, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35331224

RESUMEN

BACKGROUND: Supraphysiological hemodynamics are a recognized driver of platelet activation and thrombosis at high-grade stenosis and in blood contacting circulatory support devices. However, whether platelets mechano-sense hemodynamic parameters directly in free flow (in the absence of adhesion receptor engagement), the specific hemodynamic parameters at play, the precise timing of activation, and the signaling mechanism(s) involved remain poorly elucidated. RESULTS: Using a generalized Newtonian computational model in combination with microfluidic models of flow acceleration and quasi-homogenous extensional strain, we demonstrate that platelets directly mechano-sense acute changes in free-flow extensional strain independent of shear strain, platelet amplification loops, von Willebrand factor, and canonical adhesion receptor engagement. We define an extensional strain sensing "mechanosome" in platelets involving cooperative Ca2+ signaling driven by the mechanosensitive channel Piezo1 (as the primary strain sensor) and the fast ATP gated channel P2X1 (as the secondary signal amplifier). We demonstrate that type II PI3 kinase C2α activity (acting as a "clutch") couples extensional strain to the mechanosome. CONCLUSIONS: Our findings suggest that platelets are adapted to rapidly respond to supraphysiological extensional strain dynamics, rather than the peak magnitude of imposed wall shear stress. In the context of overall platelet activation and thrombosis, we posit that "extensional strain sensing" acts as a priming mechanism in response to threshold levels of extensional strain allowing platelets to form downstream adhesive interactions more rapidly under the limiting effects of supraphysiological hemodynamics.


Asunto(s)
Activación Plaquetaria , Trombosis , Plaquetas/metabolismo , Hemodinámica , Humanos , Canales Iónicos , Estrés Mecánico , Factor de von Willebrand/metabolismo
5.
J Chem Inf Model ; 62(19): 4605-4619, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36178379

RESUMEN

The ability to predict cell-permeable candidate molecules has great potential to assist drug discovery projects. Large molecules that lie beyond the Rule of Five (bRo5) are increasingly important as drug candidates and tool molecules for chemical biology. However, such large molecules usually do not cross cell membranes and cannot access intracellular targets or be developed as orally bioavailable drugs. Here, we describe a random forest (RF) machine learning model for the prediction of passive membrane permeation rates developed using a set of over 1000 bRo5 macrocyclic compounds. The model is based on easily calculated chemical features/descriptors as independent variables. Our random forest (RF) model substantially outperforms a multiple linear regression model based on the same features and achieves better performance metrics than previously reported models using the same underlying data. These features include: (1) polar surface area in water, (2) the octanol-water partitioning coefficient, (3) the number of hydrogen-bond donors, (4) the sum of the topological distances between nitrogen atoms, (5) the sum of the topological distances between nitrogen and oxygen atoms, and (6) the multiple molecular path count of order 2. The last three features represent molecular flexibility, the ability of the molecule to adopt different conformations in the aqueous and membrane interior phases, and the molecular "chameleonicity." Guided by the model, we propose design guidelines for membrane-permeating macrocycles. It is anticipated that this model will be useful in guiding the design of large, bioactive molecules for medicinal chemistry and chemical biology applications.


Asunto(s)
Compuestos Macrocíclicos , Hidrógeno , Aprendizaje Automático , Nitrógeno , Octanoles , Oxígeno , Agua
6.
Bioorg Med Chem ; 69: 116832, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35752141

RESUMEN

A novel series of TGX-221 analogues was prepared that include isosteric replacement of the 4H-pyrido[1,2-a]pyrimidin-4-one with a 4H-benzo[e][1,3]oxazin-4-one scaffold. The compounds that included an CH(CH3)NH type linker showed comparable activity to TGX-221 analogues with the isosterism supported by the comparative SAR analysis. The analogues containing an CH(CH3)O linker were less active but still showed useful SAR including a favoured o-methyl substitution.


Asunto(s)
Morfolinas , Pirimidinonas , Pirimidinonas/farmacología , Relación Estructura-Actividad
7.
Bioorg Chem ; 123: 105763, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35366581

RESUMEN

The SPRY domain-containing SOCS box protein-2 (SPSB2) plays a critical role in the degradation of inducible nitric oxide synthase (iNOS) in macrophages. In this study, we have conjugated a peptide inhibitor of the iNOS-SPSB2 interaction with a cell-penetrating peptide (CPP) for delivery into macrophages, and confirmed its binding to SPSB2. We have assessed the uptake of a fluorophore-tagged analogue by RAW 264.7 and immortalised bone marrow derived macrophage (iBMDM) cell lines, and shown that the CPP-peptide conjugate enhanced NO production. The findings of this study will be useful in further refinement of CPP-peptide conjugates as leads in the development of new antibiotics that target the host innate immune response.


Asunto(s)
Péptidos de Penetración Celular , Óxido Nítrico , Péptidos de Penetración Celular/farmacología , Macrófagos/metabolismo , Modelos Moleculares , Óxido Nítrico Sintasa de Tipo II/metabolismo
8.
Chemistry ; 27(58): 14489-14500, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34415083

RESUMEN

Our understanding of the factors affecting the stability of cyclic d/l peptide (CP) nanotubes remains underdeveloped. In this work, we investigate the impact of side chain alignment, hydrophobicity and charge on CP nanotube stability through X-ray crystallography, NMR spectroscopy and molecular dynamics (MD) simulations. We characterise the distinct CP-CP alignments that can form and identify stable and unstable dimers by MD simulation. We measure H-bond half-lives of synthesised CPs by 1 H-D exchange experiments and find good correlation with predicted CP-CP stabilities. We find that hydrophobic amino acids improve CP dimer stability but experimentally reduce solubility. Charged amino acids either increase or decrease CP dimer stability depending on the relative orientation and composition of charged groups. X-ray crystal structures are solved for two CPs, revealing non-tubular folded conformations. Ultimately, this work will assist the educated design of stable tubular structures for potential applications in biomedicine.


Asunto(s)
Nanotubos de Péptidos , Nanotubos , Cristalografía , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Péptidos Cíclicos
9.
Pharm Res ; 38(6): 1125-1137, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34100217

RESUMEN

PURPOSE: Successful oral peptide delivery faces two major hurdles: low enzymatic stability in the gastro-intestinal lumen and poor intestinal membrane permeability. While lipid-based formulations (LBF) have the potential to overcome these barriers, effective formulation of peptides remains challenging. Lipophilic salt (LS) technology can increase the apparent lipophilicity of peptides, making them more suitable for LBF. METHODS: As a model therapeutic peptide, octreotide (OCT) was converted to the docusate LS (OCT.DoS2), and compared to the commercial acetate salt (OCT.OAc2) in oral absorption studies and related in vitro studies, including parallel artificial membrane permeability assay (PAMPA), Caco-2, in situ intestine perfusion, and simulated digestion in vitro models. The in vivo oral absorption of OCT.DoS2 and OCT.OAc2 formulated in self-emulsifying drug delivery systems (SEDDS) was studied in rats. RESULTS: LS formulation improved the solubility and loading of OCT in LBF excipients and OCT.DoS2 in combination with SEDDS showed higher OCT absorption than the acetate comparator in the in vivo studies in rats. The Caco-2 and in situ intestine perfusion models indicated no increases in permeability for OCT.DoS2. However, the in vitro digestion studies showed reduced enzymatic degradation of OCT.DoS2 when formulated in the SEDDS formulations. Further in vitro dissociation and release studies suggest that the enhanced bioavailability of OCT from SEDDS-incorporating OCT.DoS2 is likely a result of higher partitioning into and prolonged retention within lipid colloid structures. CONCLUSION: The combination of LS and LBF enhanced the in vivo oral absorption of OCT primarily via the protective effect of LBF sheltering the peptide from gastrointestinal degradation.


Asunto(s)
Composición de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/métodos , Excipientes/farmacocinética , Absorción Gastrointestinal/fisiología , Fármacos Gastrointestinales/farmacocinética , Octreótido/farmacocinética , Administración Oral , Animales , Células CACO-2 , Excipientes/administración & dosificación , Excipientes/síntesis química , Absorción Gastrointestinal/efectos de los fármacos , Fármacos Gastrointestinales/administración & dosificación , Fármacos Gastrointestinales/síntesis química , Humanos , Masculino , Octreótido/administración & dosificación , Octreótido/síntesis química , Ratas , Ratas Sprague-Dawley , Sales (Química)
10.
J Biol Chem ; 294(22): 8959-8972, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-30992368

RESUMEN

Protozoan parasites of the phylum Apicomplexa actively move through tissue to initiate and perpetuate infection. The regulation of parasite motility relies on cyclic nucleotide-dependent kinases, but how these kinases are activated remains unknown. Here, using an array of biochemical and cell biology approaches, we show that the apicomplexan parasite Toxoplasma gondii expresses a large guanylate cyclase (TgGC) protein, which contains several upstream ATPase transporter-like domains. We show that TgGC has a dynamic localization, being concentrated at the apical tip in extracellular parasites, which then relocates to a more cytosolic distribution during intracellular replication. Conditional TgGC knockdown revealed that this protein is essential for acute-stage tachyzoite growth, as TgGC-deficient parasites were defective in motility, host cell attachment, invasion, and subsequent host cell egress. We show that TgGC is critical for a rapid rise in cytosolic [Ca2+] and for secretion of microneme organelles upon stimulation with a cGMP agonist, but these deficiencies can be bypassed by direct activation of signaling by a Ca2+ ionophore. Furthermore, we found that TgGC is required for transducing changes in extracellular pH and [K+] to activate cytosolic [Ca2+] flux. Together, the results of our work implicate TgGC as a putative signal transducer that activates Ca2+ signaling and motility in Toxoplasma.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Señalización del Calcio , Guanilato Ciclasa/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Adenosina Trifosfatasas/genética , Calcio/metabolismo , Ionóforos de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , GMP Cíclico/metabolismo , Citosol/metabolismo , Guanilato Ciclasa/antagonistas & inhibidores , Guanilato Ciclasa/genética , Concentración de Iones de Hidrógeno , Oligonucleótidos Antisentido/metabolismo , Potasio/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Pirazoles/farmacología , Pirimidinonas/farmacología , Toxoplasma/crecimiento & desarrollo
11.
Adv Exp Med Biol ; 1145: 15-36, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31364069

RESUMEN

Polymyxins are naturally occurring cyclic lipopeptides that were discovered more than 60 years ago. They have a narrow antibacterial spectrum, which is mainly against Gram-negative pathogens. The dry antibiotic pipeline, together with the increasing incidence of bacterial resistance in the clinic, has been dubbed 'the perfect storm'. This has forced a re-evaluation of 'old' antibiotics, in particular the polymyxins, which retain activity against many multidrug-resistant (MDR) Gram-negative organisms. As a consequence, polymyxin B and colistin (polymyxin E) are now used as the last therapeutic option for infections caused by 'superbugs' such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae. This chapter covers the history, chemistry and antibacterial spectrum of these very important last-line lipopeptide antibiotics.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Polimixinas/farmacología , Colistina/farmacología , Humanos , Polimixina B/farmacología
12.
Angew Chem Int Ed Engl ; 58(2): 596-601, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30452108

RESUMEN

Cyclic d / l peptides (CPs) assemble spontaneously via backbone H-bonding to form extended nanostructures. These modular materials have great potential as versatile bionanomaterials. However, the useful development of CP nanomaterials requires practical methods to direct and control their assembly. In this work, we present novel, heterogeneous, covalently linked CP tetramers that achieve local control over the CP subunit order and composition through coupling of amino acid side-chains using copper-activated azide-alkyne cycloaddition and disulfide bond formation. Cryo-transmission electron microscopy revealed the formation of highly ordered, fibrous nanostructures, while NMR studies showed that these systems have strong intramolecular H-bonding in solution. The introduction of inter-CP tethers is expected to enable the development of complex nanomaterials with controllable chemical properties, facilitating the development of precisely functionalized or "decorated" peptide nanostructures.


Asunto(s)
Nanoestructuras/química , Nanotubos/química , Péptidos Cíclicos/química , Humanos
13.
Artículo en Inglés | MEDLINE | ID: mdl-29061752

RESUMEN

Polymyxins are a last line of defense against multidrug-resistant Gram-negative pathogens. Recent pharmacological data show that intravenous polymyxins can cause nephrotoxicity in up to 60% of patients, and the plasma concentrations of polymyxins achieved with the currently recommended dosage regimens are suboptimal in a large proportion of patients. Simply increasing the daily dose of polymyxins is not possible due to nephrotoxicity. This study aimed to examine the protective effect of methionine against polymyxin-induced nephrotoxicity. Methionine (400 mg/kg of body weight), polymyxin B (35 mg/kg), a combination of methionine (100 or 400 mg/kg) and polymyxin B, and saline were administered to mice twice daily over 3.5 days. Kidneys were collected immediately at the end of the experiment for histological examination. The effect of methionine on the pharmacokinetics of polymyxin B was investigated in rats. The attenuation of polymyxin B (0.75 mM)-induced mitochondrial superoxide production by methionine (10.0 mM) was examined in rat kidney (NRK-52E) cells. Histological results revealed that the polymyxin-induced nephrotoxicity in mice was ameliorated by methionine in a dose-dependent manner. The methionine doses were well tolerated in the mice and rats, and the pharmacokinetics of polymyxin B in rats were not affected by methionine. In the group receiving polymyxin B-methionine, the total body clearance of polymyxin B was very similar to that in the group receiving polymyxin B alone (3.71 ± 0.57 versus 3.12 ± 1.66 ml/min/kg, P > 0.05). A substantial attenuation of polymyxin-induced mitochondrial superoxide production in NRK-52E cells was observed following pretreatment with methionine. Our results demonstrate that coadministration of methionine significantly ameliorated polymyxin-induced nephrotoxicity and decreased mitochondrial superoxide production in renal tubular cells.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Antibacterianos/efectos adversos , Metionina/farmacología , Estrés Oxidativo/efectos de los fármacos , Polimixina B/efectos adversos , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/patología , Animales , Antibacterianos/farmacocinética , Células Cultivadas , Femenino , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Polimixina B/farmacocinética , Sustancias Protectoras/farmacología , Ratas Sprague-Dawley , Superóxidos/metabolismo
14.
Biochemistry ; 56(4): 657-668, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28071053

RESUMEN

Polymyxins remain one of the few antibiotics available for treating antibiotic resistant bacteria. Here we describe polymyxin B thioesterase which performs the final step in polymyxin B biosynthesis. Isolated thioesterase catalyzed cyclization of an N-acetylcystamine polymyxin B analogue to form polymyxin B. The thioesterase contained a catalytic cysteine unlike most thioesterases which possess a serine. Supporting this, incubation of polymyxin B thioesterase with reducing agents abolished enzymatic activity, while mutation of the catalytic cysteine to serine significantly decreased activity. NMR spectroscopy demonstrated that uncyclized polymyxin B was disordered in solution, unlike other thioesterase substrates which adopt a transient structure similar to their product. Modeling showed the thioesterase substrate-binding cleft was highly negatively charged, suggesting a mechanism for the cyclization of the substrate. These studies provide new insights into the role of polymyxin thioesterase in polymyxin biosynthesis and highlight its potential use for the chemoenzymatic synthesis of polymyxin lipopeptides.


Asunto(s)
Cisteína/química , Ligasas/química , Polimixina B/biosíntesis , Tioléster Hidrolasas/química , Secuencia de Aminoácidos , Biocatálisis , Dominio Catalítico , Clonación Molecular , Ciclización , Cisteína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Ligasas/genética , Ligasas/metabolismo , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Mutación , Oxidación-Reducción , Polimixina B/química , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Especificidad por Sustrato , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo
15.
J Biol Chem ; 291(7): 3626-38, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26670609

RESUMEN

The intracellular protease inhibitor Sb9 (SerpinB9) is a regulator of the cytotoxic lymphocyte protease GzmB (granzyme B). Although GzmB is primarily involved in the destruction of compromised cells, recent evidence suggests that it is also involved in lysosome-mediated death of the cytotoxic lymphocyte itself. Sb9 protects the cell from GzmB released from lysosomes into the cytosol. Here we show that reactive oxygen species (ROS) generated within cytotoxic lymphocytes by receptor stimulation are required for lyososomal permeabilization and release of GzmB into the cytosol. Importantly, ROS also inactivate Sb9 by oxidizing a highly conserved cysteine pair (P1-P1' in rodents and P1'-P2' in other mammals) in the reactive center loop to form a vicinal disulfide bond. Replacement of the P4-P3' reactive center loop residues of the prototype serpin, SERPINA1, with the P4-P5' residues of Sb9 containing the cysteine pair is sufficient to convert SERPINA1 into a ROS-sensitive GzmB inhibitor. Conversion of the cysteine pair to serines in either human or mouse Sb9 results in a functional serpin that inhibits GzmB and resists ROS inactivation. We conclude that ROS sensitivity of Sb9 allows the threshold for GzmB-mediated suicide to be lowered, as part of a conserved post-translational homeostatic mechanism regulating lymphocyte numbers or activity. It follows, for example, that antioxidants may improve NK cell viability in adoptive immunotherapy applications by stabilizing Sb9.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Granzimas/metabolismo , Células Asesinas Naturales/metabolismo , Proteínas de la Membrana/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serpinas/metabolismo , Animales , Apoptosis , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Línea Celular , Células Cultivadas , Cistina/química , Granzimas/antagonistas & inhibidores , Granzimas/química , Granzimas/genética , Humanos , Células Jurkat , Células Asesinas Naturales/citología , Células Asesinas Naturales/inmunología , Lisosomas/enzimología , Lisosomas/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mutantes , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Serpinas/química , Serpinas/genética
16.
Bioorg Med Chem ; 25(20): 5531-5536, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28838830

RESUMEN

A series of 40 7-(O-substituted)-2-morpholino-8-aryl-4H-benzo[e][1,3]oxazin-4-one derivatives was synthesized. They were prepared via synthesis of a key precursor, 8-bromo-7-hydroxy-2-morpholino-4H-benzo[e][1,3]oxazin-4-one 13 which was amenable to ether synthesis at the 7-position and Suzuki coupling at the 8-position. The 2 protons of 7-OCH2 in compounds 18g, 18h, 18i, 18l and 18m prove to be magnetically non-equivalent, atropisomerism (axial chirality), as result of sterically hindered rotation of the bulky 8-aryl-substituent. The products were evaluated for their activities against PI3K isoforms, DNA-PK and PDE3. The results showed that this substitution pattern has a deleterious effect on PI3K activities, which may arise from steric hindrance in the active site. PI3Kδ was somewhat more tolerant of this substitution particularly where 8-(4-methoxylphenyl) substituents were present (IC50s∼2-3µM). Good activities against PDE3 were also obtained for compounds, with particular members of the 7-(2-pyridinyl) methoxy series 19 showing good inhibition (IC50s∼2-3µM), comparable to previously described analogues. A piperazinyl derivative 26a effectively inhibited ADP-induced platelet aggregation with an IC50 of 8µM.


Asunto(s)
Benzoxazinas/farmacología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Benzoxazinas/síntesis química , Benzoxazinas/química , Proteína Quinasa Activada por ADN/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Fosfatidilinositol 3-Quinasas/metabolismo , Agregación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/síntesis química , Inhibidores de Agregación Plaquetaria/química , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad
17.
J Nat Prod ; 80(5): 1264-1274, 2017 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-28463513

RESUMEN

The increasing prevalence of polymyxin-resistant bacteria has stimulated the search for improved polymyxin lipopeptides. Here we describe the sequence and product profile for polymyxin D nonribosomal peptide synthetase from Paenibacillus polymyxa ATCC 10401. The polymyxin D synthase gene cluster comprised five genes that encoded ABC transporters (pmxC and pmxD) and enzymes responsible for the biosynthesis of polymyxin D (pmxA, pmxB, and pmxE). Unlike polymyxins B and E, polymyxin D contains d-Ser at position 3 as opposed to l-α,γ-diaminobutyric acid and has an l-Thr at position 7 rather than l-Leu. Module 3 of pmxE harbored an auxiliary epimerization domain that catalyzes the conversion of l-Ser to the d-form. Structural modeling suggested that the adenylation domains of module 3 in PmxE and modules 6 and 7 in PmxA could bind amino acids with larger side chains than their preferred substrate. Feeding individual amino acids into the culture media not only affected production of polymyxins D1 and D2 but also led to the incorporation of different amino acids at positions 3, 6, and 7 of polymyxin D. Interestingly, the unnatural polymyxin analogues did not show antibiotic activity against a panel of Gram-negative clinical isolates, while the natural polymyxins D1 and D2 exhibited excellent in vitro antibacterial activity and were efficacious against Klebsiella pneumoniae and Acinetobacter baumannii in a mouse blood infection model. The results demonstrate the excellent antibacterial activity of these unusual d-Ser3 polymxyins and underscore the possibility of incorporating alternate amino acids at positions 3, 6, and 7 of polymyxin D via manipulation of the polymyxin nonribosomal biosynthetic machinery.


Asunto(s)
Antibacterianos/farmacología , Ligasas/biosíntesis , Lipopéptidos/metabolismo , Paenibacillus polymyxa/química , Polimixinas/biosíntesis , Polimixinas/farmacología , Animales , Antibacterianos/química , Ligasas/química , Ligasas/metabolismo , Lipopéptidos/química , Ratones , Estructura Molecular , Familia de Multigenes , Polimixinas/química , Polimixinas/metabolismo
18.
J Nat Prod ; 80(1): 225-229, 2017 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-28080060

RESUMEN

The pharmacokinetics of polymyxin B1, polymyxin B2, colistin A, and colistin B were investigated in a rat model following intravenous administration (0.8 mg/kg) of each individual component. Plasma and urine concentrations were determined by LC-MS/MS, and plasma protein binding was measured by ultracentrifugation. Total and unbound pharmacokinetic parameters for each component were calculated using noncompartmental analysis. All of the polymyxin components had a similar clearance, volume of distribution, elimination half-life, and urinary recovery. The area under the concentration-time curve for polymyxins B1 and B2 was greater than those of colistins A and B. Colistin A (56.6 ± 9.25%) and colistin B (41.7 ± 12.4%) displayed lower plasma protein binding in rat plasma compared to polymyxin B1 (82.3 ± 4.30%) and polymyxin B2 (68.4 ± 3.50%). These differences in plasma protein binding potentially equate to significant differences in unbound pharmacokinetics, highlighting the need for more stringent standardization of the composition of commercial products currently available for clinical use.


Asunto(s)
Colistina/farmacocinética , Polimixina B/farmacocinética , Polimixinas/análogos & derivados , Animales , Colistina/química , Colistina/aislamiento & purificación , Colistina/farmacología , Cinética , Estructura Molecular , Polimixina B/aislamiento & purificación , Polimixina B/farmacología , Polimixinas/química , Polimixinas/aislamiento & purificación , Polimixinas/farmacocinética , Polimixinas/farmacología , Ratas , Espectrometría de Masas en Tándem
19.
Sensors (Basel) ; 17(11)2017 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-29137129

RESUMEN

Polymyxins (polymyxin B and colistin) are cyclic lipopeptide antibiotics that serve as a last-line defence against Gram-negative "superbugs". In the present study, two novel fluorescent polymyxin probes were designed through regio-selective modifications of the polymyxin B core structure at the N-terminus and the hydrophobic motif at positions 6 and 7. The resulting probes, FADDI-285 and FADDI-286 demonstrated comparable antibacterial activity (MICs 2-8 mg/L) to polymyxin B and colistin (MICs 0.5-8 mg/L) against a panel of gram-negative clinical isolates of Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa. These probes should prove to be of considerable utility for imaging cellular uptake and mechanistic investigations of these important last-line antibiotics.

20.
Bioconjug Chem ; 27(9): 2166-75, 2016 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-27513006

RESUMEN

Traceable truncated Neuropeptide Y (NPY) analogues with Y1 receptor (Y1R) affinity and selectivity are highly desirable tools in studying receptor location, regulation, and biological functions. A range of fluorescently labeled analogues of a reported Y1R/Y4R preferring ligand BVD-15 have been prepared and evaluated using high content imaging techniques. One peptide, [Lys(2)(sCy5), Arg(4)]BVD-15, was characterized as an Y1R antagonist with a pKD of 7.2 measured by saturation analysis using fluorescent imaging. The peptide showed 8-fold lower affinity for Y4R (pKD = 6.2) and was a partial agonist at this receptor. The suitability of [Lys(2)(sCy5), Arg(4)]BVD-15 for Y1R and Y4R competition binding experiments was also demonstrated in intact cells. The nature of the label was shown to be critical with replacement of sCy5 by the more hydrophobic Cy5.5 resulting in a switch from Y1R antagonist to Y1R partial agonist.


Asunto(s)
Carbocianinas/química , Colorantes/química , Neuropéptido Y/química , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Receptores de Neuropéptido Y/metabolismo , Secuencia de Aminoácidos , Unión Competitiva , Células HEK293 , Humanos , Ligandos , Coloración y Etiquetado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA