RESUMEN
Concerted political attention has focused on reducing deforestation, and this remains the cornerstone of most biodiversity conservation strategies. However, maintaining forest cover may not reduce anthropogenic forest disturbances, which are rarely considered in conservation programmes. These disturbances occur both within forests, including selective logging and wildfires, and at the landscape level, through edge, area and isolation effects. Until now, the combined effect of anthropogenic disturbance on the conservation value of remnant primary forests has remained unknown, making it impossible to assess the relative importance of forest disturbance and forest loss. Here we address these knowledge gaps using a large data set of plants, birds and dung beetles (1,538, 460 and 156 species, respectively) sampled in 36 catchments in the Brazilian state of Pará. Catchments retaining more than 6980% forest cover lost more conservation value from disturbance than from forest loss. For example, a 20% loss of primary forest, the maximum level of deforestation allowed on Amazonian properties under Brazil's Forest Code, resulted in a 3954% loss of conservation value: 96171% more than expected without considering disturbance effects. We extrapolated the disturbance-mediated loss of conservation value throughout Pará, which covers 25% of the Brazilian Amazon. Although disturbed forests retained considerable conservation value compared with deforested areas, the toll of disturbance outside Pará's strictly protected areas is equivalent to the loss of 92,000139,000 km2 of primary forest. Even this lowest estimate is greater than the area deforested across the entire Brazilian Amazon between 2006 and 2015 (ref. 10). Species distribution models showed that both landscape and within-forest disturbances contributed to biodiversity loss, with the greatest negative effects on species of high conservation and functional value. These results demonstrate an urgent need for policy interventions that go beyond the maintenance of forest cover to safeguard the hyper-diversity of tropical forest ecosystems.
Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/estadística & datos numéricos , Bosques , Actividades Humanas , Clima Tropical , Animales , Aves/fisiología , Brasil , Escarabajos/fisiología , Incendios/estadística & datos numéricos , Agricultura Forestal/estadística & datos numéricos , PlantasRESUMEN
Secondary forests (SFs) regenerating on previously deforested land account for large, expanding areas of tropical forest cover. Given that tropical forests rank among Earth's most important reservoirs of carbon and biodiversity, SFs play an increasingly pivotal role in the carbon cycle and as potential habitat for forest biota. Nevertheless, their capacity to regain the biotic attributes of undisturbed primary forests (UPFs) remains poorly understood. Here, we provide a comprehensive assessment of SF recovery, using extensive tropical biodiversity, biomass, and environmental datasets. These data, collected in 59 naturally regenerating SFs and 30 co-located UPFs in the eastern Amazon, cover >1,600 large- and small-stemmed plant, bird, and dung beetles species and a suite of forest structure, landscape context, and topoedaphic predictors. After up to 40 years of regeneration, the SFs we surveyed showed a high degree of biodiversity resilience, recovering, on average among taxa, 88% and 85% mean UPF species richness and composition, respectively. Across the first 20 years of succession, the period for which we have accurate SF age data, biomass recovered at 1.2% per year, equivalent to a carbon uptake rate of 2.25 Mg/ha per year, while, on average, species richness and composition recovered at 2.6% and 2.3% per year, respectively. For all taxonomic groups, biomass was strongly associated with SF species distributions. However, other variables describing habitat complexity-canopy cover and understory stem density-were equally important occurrence predictors for most taxa. Species responses to biomass revealed a successional transition at approximately 75 Mg/ha, marking the influx of high-conservation-value forest species. Overall, our results show that naturally regenerating SFs can accumulate substantial amounts of carbon and support many forest species. However, given that the surveyed SFs failed to return to a typical UPF state, SFs are not substitutes for UPFs.
Asunto(s)
Biodiversidad , Biomasa , Bosques , Animales , Aves/fisiología , Ciclo del Carbono , Escarabajos/fisiología , Conservación de los Recursos Naturales , Conjuntos de Datos como Asunto , Ecosistema , Árboles , Clima TropicalRESUMEN
As humans continue to alter tropical landscapes across the world, it is important to understand what environmental factors help determine the persistence of biodiversity in modified ecosystems. Studies on well-known taxonomic groups can offer critical insights as to the fate of biodiversity in these modified systems. Here we investigated species-specific responses of 44 forest-associated bird species with different behavioural traits to forest disturbance in 171 transects distributed across 31 landscapes in two regions of the eastern Brazilian Amazon. We investigated patterns of species occurrence in primary forests varyingly disturbed by selective-logging and fire and examined the relative importance of local, landscape and historical environmental variables in determining species occurrences. Within undisturbed and disturbed primary forest transects, we found that distance to forest edge and the biomass of large trees were the most important predictors driving the occurrence of individual species. However, we also found considerable variation in species responses to different environmental variables as well as inter-regional variation in the responses of the same species to the same environmental variables. We advocate the utility of using species-level analyses to complement community-wide responses in order to uncover highly variable and species-specific responses to environmental change that remain so poorly understood.
Asunto(s)
Distribución Animal , Biodiversidad , Aves , Ambiente , Bosques , Árboles , Animales , Biomasa , Brasil , Incendios , Humanos , Especificidad de la Especie , Clima TropicalRESUMEN
Land-cover change and ecosystem degradation may lead to biotic homogenization, yet our understanding of this phenomenon over large spatial scales and different biotic groups remains weak. We used a multi-taxa dataset from 335 sites and 36 heterogeneous landscapes in the Brazilian Amazon to examine the potential for landscape-scale processes to modulate the cumulative effects of local disturbances. Biotic homogenization was high in production areas but much less in disturbed and regenerating forests, where high levels of among-site and among-landscape ß-diversity appeared to attenuate species loss at larger scales. We found consistently high levels of ß-diversity among landscapes for all land cover classes, providing support for landscape-scale divergence in species composition. Our findings support concerns that ß-diversity has been underestimated as a driver of biodiversity change and underscore the importance of maintaining a distributed network of reserves, including remaining areas of undisturbed primary forest, but also disturbed and regenerating forests, to conserve regional biota.
Asunto(s)
Biodiversidad , Bosques , Clima Tropical , Agricultura , Animales , Aves , Brasil , Conservación de los Recursos Naturales , InsectosRESUMEN
Reforestation has large potential for mitigating climate change through carbon sequestration. Native mixed-species plantings have a higher potential to reverse biodiversity loss than do plantations of production species, but there are few data on their capacity to store carbon. A chronosequence (5-45 years) of 36 native mixed-species plantings, paired with adjacent pastures, was measured to investigate changes to stocks among C pools following reforestation of agricultural land in the medium rainfall zone (400-800 mm yr(-1)) of temperate Australia. These mixed-species plantings accumulated 3.09 ± 0.85 t C ha(-1) yr(-1) in aboveground biomass and 0.18 ± 0.05 t C ha(-1) yr(-1) in plant litter, reaching amounts comparable to those measured in remnant woodlands by 20 years and 36 years after reforestation respectively. Soil C was slower to increase, with increases seen only after 45 years, at which time stocks had not reached the amounts found in remnant woodlands. The amount of trees (tree density and basal area) was positively associated with the accumulation of carbon in aboveground biomass and litter. In contrast, changes to soil C were most strongly related to the productivity of the location (a forest productivity index and soil N content in the adjacent pasture). At 30 years, native mixed-species plantings had increased the stability of soil C stocks, with higher amounts of recalcitrant C and higher C:N ratios than their adjacent pastures. Reforestation with native mixed-species plantings did not significantly change the availability of macronutrients (N, K, Ca, Mg, P, and S) or micronutrients (Fe, B, Mn, Zn, and Cu), content of plant toxins (Al, Si), acidity, or salinity (Na, electrical conductivity) in the soil. In this medium rainfall area, native mixed-species plantings provided comparable rates of C sequestration to local production species, with the probable additional benefit of providing better quality habitat for native biota. These results demonstrate that reforestation using native mixed-species plantings is an effective alternative for carbon sequestration to standard monocultures of production species in medium rainfall areas of temperate continental climates, where they can effectively store C, convert C into stable pools and provide greater benefits for biodiversity.
Asunto(s)
Biomasa , Secuestro de Carbono , Carbono/análisis , Conservación de los Recursos Naturales , Suelo/química , Biodiversidad , Cambio Climático , Eucalyptus/crecimiento & desarrollo , Agricultura Forestal , Estaciones del Año , Árboles , VictoriaRESUMEN
Adaptive resource tracking in space and time may be disrupted by the modification of resources and competitors. Major global change drivers (e.g. land-use change) have induced declines in many native species, while facilitating only a few. Given that many resources are predicted to become increasingly scarce under the joint effects of climate and land-use change, disturbance-tolerant species that are able to defend high-value resources may further limit the persistence of disturbance-sensitive species. We sought to determine which nectarivorous birds track variation in flowering and if relationships between nectarivores and flowering are affected by on-transect vegetation structure or the occurrence of a native, hyper-aggressive species, the noisy miner Manorina melanocephala, which has become more prevalent. We measured eucalypt flowering and abundances of nectarivorous birds over the course of a year; we measured vegetation structure on the same forest transects. Nectarivores tracked spatial and some temporal variation in flowering, but this relationship was disrupted by noisy miners. Where present in sufficient numbers, the noisy miner excluded small-bodied nectarivores (<63 g) from fragments, limiting the ability of this numerically dominant component of the avifauna to gain access to flowering resources. Altered patterns of interspecific competition due to vegetation fragmentation and climate-induced degradation may have led to changes in the distribution of small nectarivore species that is a departure from the 'ideal free distribution' model. Interactions between noisy miners and small-bodied nectarivores appear to be best described by the 'ideal despotic distribution' model in which noisy miners exclude smaller competitors and monopolize local resources. Increases in the severity and frequency of extreme climatic events (e.g. long droughts) predicted under climate change may create a boom-bust pattern of availabilities of resources. The apparent insensitivity of noisy miners to such variation in flowering resource availability and the miners' influence on the ability of small nectarivores to access resources may lead to disproportionate declines in smaller-bodied nectarivorous species. Reduced tracking of flowering by nectarivores has the potential to disrupt ecosystem services (e.g. pollination, seed dispersal) and may have long-term consequences for the persistence of fragmented vegetation, adding further pressure on forest-dependent biota.
Asunto(s)
Agresión , Conducta Alimentaria , Loros/fisiología , Néctar de las Plantas , Pájaros Cantores/fisiología , Animales , Tamaño Corporal , Cambio Climático , Flores/fisiología , Densidad de Población , VictoriaRESUMEN
Community ecologists have attempted to explain species abundance distribution (SAD) shape for more than 80 years, but usually without relating SAD shape explicitly to ecological variables. We explored whether the scale (total assemblage abundance) and shape (assemblage evenness) of avifaunal SADs were related to ecological covariates. We used data on avifaunas, in-site habitat structure and landscape context that were assembled from previous studies; this amounted to 197 transects distributed across 16,000 km(2) of the box-ironbark forests of southeastern Australia. We used Bayesian conditional autoregressive models to link SAD scale and shape to these ecological covariates. Variation in SAD scale was relatable to some ecological covariates, especially to landscape vegetation cover and to tree height. We could not find any relationships between SAD shape and ecological covariates. SAD shape, the core component in SAD theory, may hold little information about how assemblages are governed ecologically and may result from statistical processes, which, if general, would indicate that SAD shape is not useful for distinguishing among theories of assemblage structure.
Asunto(s)
Aves , Ecología , Animales , Australia , Densidad de Población , ÁrbolesRESUMEN
Asian Monsoon rainfall supports the livelihood of billions of people, yet the relative importance of different drivers remains an issue of great debate. Here, we present 30 million-year model-based reconstructions of Indian summer monsoon and South East Asian monsoon rainfall at millennial resolution. We show that precession is the dominant direct driver of orbital variability, although variability on obliquity timescales is driven through the ice sheets. Orographic development dominated the evolution of the South East Asian monsoon, but Indian summer monsoon evolution involved a complex mix of contributions from orography (39%), precession (25%), atmospheric CO2 (21%), ice-sheet state (5%) and ocean gateways (5%). Prior to 15 Ma, the Indian summer monsoon was broadly stable, albeit with substantial orbital variability. From 15 Ma to 5 Ma, strengthening was driven by a combination of orography and glaciation, while closure of the Panama gateway provided the prerequisite for the modern Indian summer monsoon state through a strengthened Atlantic meridional overturning circulation.
RESUMEN
To eradicate or effectively contain a biological invasion, all or most reproductive individuals of the invasion must be found and destroyed. To help find individual invading organisms, predictions of probable locations can be made with statistical models. We estimated spread dynamics based on time-series data and then used model-derived predictions of probable locations of individuals. We considered one of the largest data sets available for an eradication program: the campaign to eradicate the red imported fire ant (Solenopsis invicta) from around Brisbane, Australia. After estimating within-site growth (local growth) and intersite dispersal (saltatory spread) of fire ant nests, we modeled probabilities of fire ant presence for >600000 1-ha sites, including uncertainties about fire ant population and spatial dynamics. Such a high level of spatial detail is required to assist surveillance efforts but is difficult to incorporate into common modeling methods because of high computational costs. More than twice as many fire ant nests would have been found in 2008 using predictions made with our method rather than those made with the method currently used in the study region. Our method is suited to considering invasions in which a large area is occupied by the invader at low density. Improved predictions of such invasions can dramatically reduce the area that needs to be searched to find the majority of individuals, assisting containment efforts and potentially making eradication a realistic goal for many invasions previously thought to be ineradicable.
Asunto(s)
Hormigas , Animales , Funciones de Verosimilitud , Modelos Biológicos , Dinámica Poblacional , QueenslandRESUMEN
Four species of pelagic fish of particular management concern in the upper San Francisco Estuary, California, USA, have declined precipitously since ca. 2002: delta smelt (Hypomesus transpacificus), longfin smelt (Spirinchus thaleichthys), striped bass (Morone saxatilis), and threadfin shad (Dorosoma petenense). The estuary has been monitored since the late 1960s with extensive collection of data on the fishes, their pelagic prey, phytoplankton biomass, invasive species, and physical factors. We used multivariate autoregressive (MAR) modeling to discern the main factors responsible for the declines. An expert-elicited model was built to describe the system. Fifty-four relationships were built into the model, only one of which was of uncertain direction a priori. Twenty-eight of the proposed relationships were strongly supported by or consistent with the data, while 26 were close to zero (not supported by the data but not contrary to expectations). The position of the 2 per thousand isohaline (a measure of the physical response of the estuary to freshwater flow) and increased water clarity over the period of analyses were two factors affecting multiple declining taxa (including fishes and the fishes' main zooplankton prey): Our results were relatively robust with respect to the form of stock-recruitment model used and to inclusion of subsidiary covariates but may be enhanced by using detailed state-space models that describe more fully the life-history dynamics of the declining species.
Asunto(s)
Peces/crecimiento & desarrollo , Animales , Análisis Multivariante , Dinámica Poblacional , San FranciscoRESUMEN
We examined trends in abundance of four pelagic fish species (delta smelt, longfin smelt, striped bass, and threadfin shad) in the upper San Francisco Estuary, California, USA, over 40 years using Bayesian change point models. Change point models identify times of abrupt or unusual changes in absolute abundance (step changes) or in rates of change in abundance (trend changes). We coupled Bayesian model selection with linear regression splines to identify biotic or abiotic covariates with the strongest associations with abundances of each species. We then refitted change point models conditional on the selected covariates to explore whether those covariates could explain statistical trends or change points in species abundances. We also fitted a multispecies change point model that identified change points common to all species. All models included hierarchical structures to model data uncertainties, including observation errors and missing covariate values. There were step declines in abundances of all four species in the early 2000s, with a likely common decline in 2002. Abiotic variables, including water clarity, position of the 2 per thousand isohaline (X2), and the volume of freshwater exported from the estuary, explained some variation in species' abundances over the time series, but no selected covariates could explain statistically the post-2000 change points for any species.
Asunto(s)
Teorema de Bayes , Peces/crecimiento & desarrollo , Animales , Dinámica Poblacional , San FranciscoRESUMEN
Habitat connectivity is required at large spatial scales to facilitate movement of biota in response to climatic changes and to maintain viable populations of wide-ranging species. Nevertheless, it may require decades to acquire habitat linkages at such scales, and areas that could provide linkages are often developed before they can be reserved. Reserve scheduling methods usually consider only current threats, but threats change over time as development spreads and reaches presently secure areas. We investigated the importance of considering future threats when implementing projects to maintain habitat connectivity at a regional scale. To do so, we compared forward-looking scheduling strategies with strategies that consider only current threats. The strategies were applied to a Costa Rican case study, where many reserves face imminent isolation and other reserves will probably become isolated in the more distant future. We evaluated strategies in terms of two landscape-scale connectivity metrics, a pure connectivity metric and a metric of connected habitat diversity. Those strategies that considered only current threats were unreliable because they often failed to complete planned habitat linkage projects. The most reliable and effective strategies considered the future spread of development and its impact on the likelihood of completing planned habitat linkage projects. Our analyses highlight the critical need to consider future threats when building connected reserve networks over time.
Asunto(s)
Conservación de los Recursos Naturales , Costa Rica , Ecosistema , Modelos Teóricos , ÁrbolesRESUMEN
Conservation initiatives overwhelmingly focus on terrestrial biodiversity, and little is known about the freshwater cobenefits of terrestrial conservation actions. We sampled more than 1500 terrestrial and freshwater species in the Amazon and simulated conservation for species from both realms. Prioritizations based on terrestrial species yielded on average just 22% of the freshwater benefits achieved through freshwater-focused conservation. However, by using integrated cross-realm planning, freshwater benefits could be increased by up to 600% for a 1% reduction in terrestrial benefits. Where freshwater biodiversity data are unavailable but aquatic connectivity is accounted for, freshwater benefits could still be doubled for negligible losses of terrestrial coverage. Conservation actions are urgently needed to improve the status of freshwater species globally. Our results suggest that such gains can be achieved without compromising terrestrial conservation goals.
Asunto(s)
Organismos Acuáticos , Conservación de los Recursos Naturales , Ríos , Animales , Biodiversidad , BrasilRESUMEN
Restoration of degraded landscapes through replantings of native vegetation has been proceeding in response to habitat loss and fragmentation and plummeting biodiversity. Little is known about whether the investments in ecological restoration have resulted in biodiversity benefits. We evaluated the potential of restored sites to support populations by assessing bird breeding activity. We surveyed 21 revegetated sites of various ages (9-111 years) in the box-ironbark region of Victoria, Australia. Sites differed in landscape context, patch features and in-site characteristics. The latter, including whether sites were grazed, amounts of fallen timber and numbers of remnant trees, were most important in affecting overall bird breeding activity. Patch-configuration (e.g., shape, area) was of secondary importance. Landscape context appeared to have little effect on bird breeding except for one species. While these results suggest that in-site habitat structure is the predominant driver, we caution against dismissing the importance of patch characteristics and landscape context for two reasons. First, the available sites covered a relatively small range of areas (<54 ha), and we could not provide a broad range of landscape-contextual contrasts given that we could only use existing plantings. Second, much of the breeding activity was by bird species known to be tolerant of smaller woodland areas or of the open countryside. We show that there is very little breeding activity in replantings by species that have declined dramatically in rank abundance between large 'reference' areas and fragmented landscapes. It seems likely that most replantings provide habitat configurations unsuited for dealing with declines of species most vulnerable to habitat loss and fragmentation.
Asunto(s)
Aves/fisiología , Restauración y Remediación Ambiental , Reproducción , Animales , Especificidad de la Especie , VictoriaRESUMEN
Agricultural expansion and intensification are major threats to tropical biodiversity. In addition to the direct removal of native vegetation, agricultural expansion often elicits other human-induced disturbances, many of which are poorly addressed by existing environmental legislation and conservation programmes. This is particularly true for tropical freshwater systems, where there is considerable uncertainty about whether a legislative focus on protecting riparian vegetation is sufficient to conserve stream fauna.To assess the extent to which stream fish are being effectively conserved in agricultural landscapes, we examined the spatial distribution of assemblages in river basins to identify the relative importance of human impacts at instream, riparian and catchment scales, in shaping observed patterns. We used an extensive dataset on the ecological condition of 83 low-order streams distributed in three river basins in the eastern Brazilian Amazon.We collected and identified 24,420 individual fish from 134 species. Multiplicative diversity partitioning revealed high levels of compositional dissimilarity (DS) among stream sites (DS = 0.74 to 0.83) and river basins (DS = 0.82), due mainly to turnover (77.8% to 81.8%) rather than nestedness. The highly heterogeneous fish faunas in small Amazonian streams underscore the vital importance of enacting measures to protect forests on private lands outside of public protected areas.Instream habitat features explained more variability in fish assemblages (15%-19%) than riparian (2%-12%), catchment (4%-13%) or natural covariates (4%-11%). Although grouping species into functional guilds allowed us to explain up to 31% of their abundance (i.e. for nektonic herbivores), individual riparian - and catchment - scale predictor variables that are commonly a focus of environmental legislation explained very little of the observed variation (partial R2 values mostly <5%).Policy implications. Current rates of agricultural intensification and mechanization in tropical landscapes are unprecedented, yet the existing legislative frameworks focusing on protecting riparian vegetation seem insufficient to conserve stream environments and their fish assemblages. To safeguard the species-rich freshwater biota of small Amazonian streams, conservation actions must shift towards managing whole basins and drainage networks, as well as agricultural practices in already-cleared land.
RESUMEN
Most natural assets, including native biodiversity (our focus), are under increasing threat from direct (loss of habitat, hunting) and indirect (climate change) human actions. Most human impacts arise from increasing human populations coupled with rises in per capita resource use. The rates of change of human actions generally outpace those to which the biota can respond or adapt. If we are to maintain native biodiversity, then we must develop ways to envisage how the biota may be affected over the next several decades to guide management and policy responses. We consider the future for Australia's native biodiversity in the context of two assumptions. First, the human population in Australia will be 40million by 2050, which has been mooted by federal government agencies. Second, greenhouse gas emissions will track the highest rates considered by the Intergovernmental Panel on Climate Change. The scenarios are based on major drivers of change, which were constructed from seven key drivers of change pertinent to native biodiversity. Five scenarios deal with differing distributions of the human population driven by uncertainties in climate change and in the human responses to climate change. Other scenarios are governed largely by global change and explore different rates of resource use, unprecedented rates of technological change, capabilities and societal values. A narrative for each scenario is provided. The set of scenarios spans a wide range of possible future paths for Australia, with different implications for the future of native biodiversity.
Asunto(s)
Biodiversidad , Cambio Climático , Densidad de Población , Australia , Conservación de los Recursos Naturales , Ecosistema , HumanosRESUMEN
Human society has a profound adverse effect on natural assets as human populations increase and as global climate changes. We need to envisage different futures that encompass plausible human responses to threats and change, and become more mindful of their likely impacts on natural assets. We describe a method for developing a set of future scenarios for a natural asset at national scale under ongoing human population growth and climate change. The method involves expansive consideration of potential drivers of societal change, a reduction of these to form a small set of key drivers to which contrasting settings are assigned, which we use to develop a set of different scenarios. We use Australia's native biodiversity as the focus to illustrate the method.
Asunto(s)
Biodiversidad , Cambio Climático , Conservación de los Recursos Naturales , Australia , HumanosRESUMEN
Linking our knowledge of organisms to our knowledge of ecological communities and ecosystems is a key challenge for ecology. Individual size distributions (ISDs) link the size of individual organisms to the structure of ecological communities, so that studying ISDs might provide insight into how organism functioning affects ecosystems. Similarly shaped ISDs among ecosystems, coupled with allometric links between organism size and resource use, suggest the possibility of emergent resource-use patterns in ecological communities. We drew on thermodynamics to develop a maximization principle that predicted both organism and community energy use. These predictions highlighted the importance of density-dependent metabolic rates and were able to explain nonlinear relationships between community energy use and community biomass. We analyzed data on fish community energy use and biomass and found evidence of nonlinear scaling, which was predicted by the thermodynamic principle developed here and is not explained by other theories of ISDs. Detailed measurements of organism energy use will clarify the role of density dependence in driving metabolic rates and will further test our derived thermodynamic principle. Importantly, our study highlights the potential for fundamental links between ecology and thermodynamics.
RESUMEN
The concepts of ecosystem regime shifts, thresholds and alternative or multiple stable states are used extensively in the ecological and environmental management literature. When applied to aquatic ecosystems, these terms are used inconsistently reflecting differing levels of supporting evidence among ecosystem types. Although many aquatic ecosystems around the world have become degraded, the magnitude and causes of changes, relative to the range of historical variability, are poorly known. A working group supported by the Australian Centre for Ecological Analysis and Synthesis (ACEAS) reviewed 135 papers on freshwater ecosystems to assess the evidence for pressure-induced non-linear changes in freshwater ecosystems; these papers used terms indicating sudden and non-linear change in their titles and key words, and so was a positively biased sample. We scrutinized papers for study context and methods, ecosystem characteristics and focus, types of pressures and ecological responses considered, and the type of change reported (i.e., gradual, non-linear, hysteretic or irreversible change). There was little empirical evidence for regime shifts and changes between multiple or alternative stable states in these studies although some shifts between turbid phytoplankton-dominated states and clear-water, macrophyte-dominated states were reported in shallow lakes in temperate climates. We found limited understanding of the subtleties of the relevant theoretical concepts and encountered few mechanistic studies that investigated or identified cause-and-effect relationships between ecological responses and nominal pressures. Our results mirror those of reviews for estuarine, nearshore and marine aquatic ecosystems, demonstrating that although the concepts of regime shifts and alternative stable states have become prominent in the scientific and management literature, their empirical underpinning is weak outside of a specific environmental setting. The application of these concepts in future research and management applications should include evidence on the mechanistic links between pressures and consequent ecological change. Explicit consideration should also be given to whether observed temporal dynamics represent variation along a continuum rather than categorically different states.
RESUMEN
Many ecological systems around the world are changing rapidly in response to direct (land-use change) and indirect (climate change) human actions. We need tools to assess dynamically, and over appropriate management scales, condition of ecosystems and their responses to potential mitigation of pressures. Using a validated model, we determined whether stand condition of floodplain forests is related to densities of a small mammal (a carnivorous marsupial, Antechinus flavipes) in 60,000 ha of extant river red gum (Eucalyptus camaldulensis) forests in south-eastern Australia in 2004, 2005 and 2011. Stand condition was assessed remotely using models built from ground assessments of stand condition and satellite-derived reflectance. Other covariates, such as volumes of fallen timber, distances to floods, rainfall and life stages were included in the model. Trapping of animals was conducted at 272 plots (0.25 ha) across the region. Densities of second-year females (i.e. females that had survived to a second breeding year) and of second-year females with suckled teats (i.e. inferred to have been successful mothers) were higher in stands with the highest condition. There was no evidence of a relationship with stand condition for males or all females. These outcomes show that remotely-sensed estimates of stand condition (here floodplain forests) are relatable to some demographic characteristics of a small mammal species, and may provide useful information about the capacity of ecosystems to support animal populations. Over-regulation of large, lowland rivers has led to declines in many facets of floodplain function. If management of water resources continues as it has in recent decades, then our results suggest that there will be further deterioration in stand condition and a decreased capacity for female yellow-footed antechinuses to breed multiple times.