Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Mol Cell ; 58(6): 977-88, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26028537

RESUMEN

Target of Rapamycin (TOR) plays central roles in the regulation of eukaryote growth as the hub of two essential multiprotein complexes: TORC1, which is rapamycin-sensitive, and the lesser characterized TORC2, which is not. TORC2 is a key regulator of lipid biosynthesis and Akt-mediated survival signaling. In spite of its importance, its structure and the molecular basis of its rapamycin insensitivity are unknown. Using crosslinking-mass spectrometry and electron microscopy, we determined the architecture of TORC2. TORC2 displays a rhomboid shape with pseudo-2-fold symmetry and a prominent central cavity. Our data indicate that the C-terminal part of Avo3, a subunit unique to TORC2, is close to the FKBP12-rapamycin-binding domain of Tor2. Removal of this sequence generated a FKBP12-rapamycin-sensitive TORC2 variant, which provides a powerful tool for deciphering TORC2 function in vivo. Using this variant, we demonstrate a role for TORC2 in G2/M cell-cycle progression.


Asunto(s)
Complejos Multiproteicos/química , Proteínas de Saccharomyces cerevisiae/química , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/química , Antifúngicos/metabolismo , Antifúngicos/farmacología , Sitios de Unión/genética , Biocatálisis/efectos de los fármacos , Western Blotting , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Resistencia a Medicamentos/genética , Espectrometría de Masas/métodos , Diana Mecanicista del Complejo 2 de la Rapamicina , Microscopía Electrónica , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Sirolimus/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
2.
Nucleic Acids Res ; 46(10): 5297-5307, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29718337

RESUMEN

Guanine-rich DNA has the potential to fold into non-canonical G-quadruplex (G4) structures. Analysis of the genome of the social amoeba Dictyostelium discoideum indicates a low number of sequences with G4-forming potential (249-1055). Therefore, D. discoideum is a perfect model organism to investigate the relationship between the presence of G4s and their biological functions. As a first step in this investigation, we crystallized the dGGGGGAGGGGTACAGGGGTACAGGGG sequence from the putative promoter region of two divergent genes in D. discoideum. According to the crystal structure, this sequence folds into a four-quartet intramolecular antiparallel G4 with two lateral and one diagonal loops. The G-quadruplex core is further stabilized by a G-C Watson-Crick base pair and a A-T-A triad and displays high thermal stability (Tm > 90°C at 100 mM KCl). Biophysical characterization of the native sequence and loop mutants suggests that the DNA adopts the same structure in solution and in crystalline form, and that loop interactions are important for the G4 stability but not for its folding. Four-tetrad G4 structures are sparse. Thus, our work advances understanding of the structural diversity of G-quadruplexes and yields coordinates for in silico drug screening programs and G4 predictive tools.


Asunto(s)
Dictyostelium/genética , G-Cuádruplex , Conformación de Ácido Nucleico , Dicroismo Circular , Cristalografía por Rayos X , Genoma , Modelos Moleculares , Mutación , Resonancia Magnética Nuclear Biomolecular , Regiones Promotoras Genéticas , Espectrofotometría Ultravioleta
3.
RNA Biol ; 16(11): 1633-1642, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31390939

RESUMEN

RIO proteins form a conserved family of atypical protein kinases. RIO2 is a serine/threonine protein kinase/ATPase involved in pre-40S ribosomal maturation. Current crystal structures of archaeal and fungal Rio2 proteins report a monomeric form of the protein. Here, we describe three atomic structures of the human RIO2 kinase showing that it forms a homodimer in vitro. Upon self-association, each protomer ATP-binding pocket is partially remodelled and found in an apostate. The homodimerization is mediated by key residues previously shown to be responsible for ATP binding and catalysis. This unusual in vitro protein kinase dimer reveals an intricate mechanism where identical residues are involved in substrate binding and oligomeric state formation. We speculate that such an oligomeric state might be formed also in vivo and might function in maintaining the protein in an inactive state and could be employed during import.


Asunto(s)
Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Adenosina Trifosfato/metabolismo , Cristalografía por Rayos X , Humanos , Técnicas In Vitro , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína
4.
Nucleic Acids Res ; 45(10): 6135-6146, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28335001

RESUMEN

FASTK family proteins have been identified as regulators of mitochondrial RNA homeostasis linked to mitochondrial diseases, but much remains unknown about these proteins. We show that CRISPR-mediated disruption of FASTKD1 increases ND3 mRNA level, while disruption of FASTKD4 reduces the level of ND3 and of other mature mRNAs including ND5 and CYB, and causes accumulation of ND5-CYB precursor RNA. Disrupting both FASTKD1 and FASTKD4 in the same cell results in decreased ND3 mRNA similar to the effect of depleting FASTKD4 alone, indicating that FASTKD4 loss is epistatic. Interestingly, very low levels of FASTKD4 are sufficient to prevent ND3 loss and ND5-CYB precursor accumulation, suggesting that FASTKD4 may act catalytically. Furthermore, structural modeling predicts that each RAP domain of FASTK proteins contains a nuclease fold with a conserved aspartate residue at the putative active site. Accordingly, mutation of this residue in FASTKD4 abolishes its function. Experiments with FASTK chimeras indicate that the RAP domain is essential for the function of the FASTK proteins, while the region upstream determines RNA targeting and protein localization. In conclusion, this paper identifies new aspects of FASTK protein biology and suggests that the RAP domain function depends on an intrinsic nucleolytic activity.


Asunto(s)
Citocromos b/genética , Complejo I de Transporte de Electrón/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/fisiología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/fisiología , ARN/metabolismo , Secuencia de Aminoácidos , Sistemas CRISPR-Cas , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Mitocondrias/ultraestructura , Proteínas Mitocondriales/química , Modelos Moleculares , Conformación Proteica , Dominios Proteicos , ARN/genética , ARN Mensajero/genética , ARN Mitocondrial , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Alineación de Secuencia , Homología de Secuencia , Transcripción Genética
5.
RNA Biol ; 15(9): 1174-1180, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30176151

RESUMEN

Ribosome biogenesis requires a variety of trans-acting factors in order to produce functional ribosomal subunits. In human cells, the complex formed by the proteins hNob1 and hPno1 is crucial to the site 3 cleavage occurring at the 3'-end of 18S pre-rRNA. However, the properties and activity of this complex are still poorly understood. We present here a detailed characterization of hNob1 organization and its interaction with hPno1. We redefine the boundaries of the endonuclease PIN domain present in hNob1 and we further delineate the precise interacting modules required for complex formation in hNob1 and hPno1. Altogether, our data contributes to a better understanding of the complex biology required during the site 3 cleavage step in ribosome biogenesis.


Asunto(s)
Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Sustitución de Aminoácidos , Sitios de Unión , Dominio Catalítico , Humanos , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/genética , Dominios Proteicos , Mapeo de Interacción de Proteínas , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Homología de Secuencia de Aminoácido
6.
Nucleic Acids Res ; 44(22): 10862-10878, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27744351

RESUMEN

Terminal uridyltransferases (TUTases) execute 3' RNA uridylation across protists, fungi, metazoan and plant species. Uridylation plays a particularly prominent role in RNA processing pathways of kinetoplastid protists typified by the causative agent of African sleeping sickness, Trypanosoma brucei In mitochondria of this pathogen, most mRNAs are internally modified by U-insertion/deletion editing while guide RNAs and rRNAs are U-tailed. The founding member of TUTase family, RNA editing TUTase 1 (RET1), functions as a subunit of the 3' processome in uridylation of gRNA precursors and mature guide RNAs. Along with KPAP1 poly(A) polymerase, RET1 also participates in mRNA translational activation. RET1 is divergent from human TUTases and is essential for parasite viability in the mammalian host and the insect vector. Given its robust in vitro activity, RET1 represents an attractive target for trypanocide development. Here, we report high-resolution crystal structures of the RET1 catalytic core alone and in complex with UTP analogs. These structures reveal a tight docking of the conserved nucleotidyl transferase bi-domain module with a RET1-specific C2H2 zinc finger and RNA recognition (RRM) domains. Furthermore, we define RET1 region required for incorporation into the 3' processome, determinants for RNA binding, subunit oligomerization and processive UTP incorporation, and predict druggable pockets.


Asunto(s)
Proteína Coatómero/química , Proteínas Protozoarias/química , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Diseño de Fármacos , Enlace de Hidrógeno , Cinética , Leishmania/enzimología , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Edición de ARN , Especificidad por Sustrato , Tripanocidas/química
7.
Protein Expr Purif ; 133: 90-95, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28284995

RESUMEN

The Target of Rapamycin Complex is a central controller of cell growth and differentiation in eukaryotes. Its global architecture has been described by cryoelectron microscopy, and regions of its central TOR protein have been described by X-ray crystallography. However, the N-terminal region of this protein, which consists of a series of HEAT repeats, remains uncharacterised at high resolution, most likely due to the absence of a suitable purification procedure. Here, we present a robust method for the preparation of the HEAT-repeat domain, utilizing the thermophilic fungus Chaetomium thermophilum as a source organism. We describe construct design and stable expression in insect cells. An efficient two-step purification procedure is presented, and the purified product is characterised by SEC and MALDI-TOF MS. The methods described pave the way for a complete high-resolution characterisation of this elusive region of the TOR protein.


Asunto(s)
Chaetomium , Clonación Molecular , Proteínas Fúngicas , Expresión Génica , Chaetomium/enzimología , Chaetomium/genética , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Dominios Proteicos , Proteínas Recombinantes , Secuencias Repetitivas de Aminoácido , Serina-Treonina Quinasas TOR/biosíntesis , Serina-Treonina Quinasas TOR/química , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/aislamiento & purificación
8.
RNA Biol ; 13(4): 373-90, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26932506

RESUMEN

Riboswitches are non-coding elements upstream or downstream of mRNAs that, upon binding of a specific ligand, regulate transcription and/or translation initiation in bacteria, or alternative splicing in plants and fungi. We have studied thiamine pyrophosphate (TPP) riboswitches regulating translation of thiM operon and transcription and translation of thiC operon in E. coli, and that of THIC in the plant A. thaliana. For all, we ascertained an induced-fit mechanism involving initial binding of the TPP followed by a conformational change leading to a higher-affinity complex. The experimental values obtained for all kinetic and thermodynamic parameters of TPP binding imply that the regulation by A. thaliana riboswitch is governed by mass-action law, whereas it is of kinetic nature for the two bacterial riboswitches. Kinetic regulation requires that the RNA polymerase pauses after synthesis of each riboswitch aptamer to leave time for TPP binding, but only when its concentration is sufficient. A quantitative model of regulation highlighted how the pausing time has to be linked to the kinetic rates of initial TPP binding to obtain an ON/OFF switch in the correct concentration range of TPP. We verified the existence of these pauses and the model prediction on their duration. Our analysis also led to quantitative estimates of the respective efficiency of kinetic and thermodynamic regulations, which shows that kinetically regulated riboswitches react more sharply to concentration variation of their ligand than thermodynamically regulated riboswitches. This rationalizes the interest of kinetic regulation and confirms empirical observations that were obtained by numerical simulations.


Asunto(s)
Escherichia coli/genética , Riboswitch , Tiamina Pirofosfato/genética , Radical Hidroxilo/metabolismo , Cinética , Termodinámica
9.
Nucleic Acids Res ; 42(5): 3372-80, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24322298

RESUMEN

The addition of uridine nucleotide by the poly(U) polymerase (PUP) enzymes has a demonstrated impact on various classes of RNAs such as microRNAs (miRNAs), histone-encoding RNAs and messenger RNAs. Cid1 protein is a member of the PUP family. We solved the crystal structure of Cid1 in complex with non-hydrolyzable UMPNPP and a short dinucleotide compound ApU. These structures revealed new residues involved in substrate/product stabilization. In particular, one of the three catalytic aspartate residues explains the RNA dependence of its PUP activity. Moreover, other residues such as residue N165 or the ß-trapdoor are shown to be critical for Cid1 activity. We finally suggest that the length and sequence of Cid1 substrate RNA influence the balance between Cid1's processive and distributive activities. We propose that particular processes regulated by PUPs require the enzymes to switch between the two types of activity as shown for the miRNA biogenesis where PUPs can either promote DICER cleavage via short U-tail or trigger miRNA degradation by adding longer poly(U) tail. The enzymatic properties of these enzymes may be critical for determining their particular function in vivo.


Asunto(s)
Nucleotidiltransferasas/química , Proteínas de Schizosaccharomyces pombe/química , Cristalografía por Rayos X , Modelos Moleculares , Nucleótidos/química , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Polimerizacion , Unión Proteica , ARN/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
10.
Nucleic Acids Res ; 42(10): 6742-52, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24748666

RESUMEN

The Split Ends (SPEN) protein was originally discovered in Drosophila in the late 1990s. Since then, homologous proteins have been identified in eukaryotic species ranging from plants to humans. Every family member contains three predicted RNA recognition motifs (RRMs) in the N-terminal region of the protein. We have determined the crystal structure of the region of the human SPEN homolog that contains these RRMs-the SMRT/HDAC1 Associated Repressor Protein (SHARP), at 2.0 Å resolution. SHARP is a co-regulator of the nuclear receptors. We demonstrate that two of the three RRMs, namely RRM3 and RRM4, interact via a highly conserved interface. Furthermore, we show that the RRM3-RRM4 block is the main platform mediating the stable association with the H12-H13 substructure found in the steroid receptor RNA activator (SRA), a long, non-coding RNA previously shown to play a crucial role in nuclear receptor transcriptional regulation. We determine that SHARP association with SRA relies on both single- and double-stranded RNA sequences. The crystal structure of the SHARP-RRM fragment, together with the associated RNA-binding studies, extend the repertoire of nucleic acid binding properties of RRM domains suggesting a new hypothesis for a better understanding of SPEN protein functions.


Asunto(s)
Proteínas de Homeodominio/química , Proteínas Nucleares/química , Proteínas de Unión al ARN/química , ARN/química , Secuencias de Aminoácidos , Cristalografía por Rayos X , Proteínas de Unión al ADN , Proteínas de Homeodominio/metabolismo , Humanos , Modelos Moleculares , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Proteínas de Unión al ARN/metabolismo
11.
PLoS Genet ; 8(2): e1002484, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22346760

RESUMEN

Shifts between epigenetic states of transcriptional activity are typically correlated with changes in epigenetic marks. However, exceptions to this rule suggest the existence of additional, as yet uncharacterized, layers of epigenetic regulation. MOM1, a protein of 2,001 amino acids that acts as a transcriptional silencer, represents such an exception. Here we define the 82 amino acid domain called CMM2 (Conserved MOM1 Motif 2) as a minimal MOM1 fragment capable of transcriptional regulation. As determined by X-ray crystallography, this motif folds into an unusual hendecad-based coiled-coil. Structure-based mutagenesis followed by transgenic complementation tests in plants demonstrate that CMM2 and its dimerization are effective for transcriptional suppression at chromosomal loci co-regulated by MOM1 and the siRNA pathway but not at loci controlled by MOM1 in an siRNA-independent fashion. These results reveal a surprising separation of epigenetic activities that enable the single, large MOM1 protein to coordinate cooperating mechanisms of epigenetic regulation.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Arabidopsis/química , Arabidopsis/genética , Epigénesis Genética/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Nucleares/química , Proteínas Nucleares/genética , Factores de Transcripción/química , Factores de Transcripción/genética , Transcripción Genética , ATPasas Asociadas con Actividades Celulares Diversas , Secuencia de Aminoácidos , Cristalografía por Rayos X , Silenciador del Gen , Datos de Secuencia Molecular , Mutagénesis , Plantas Modificadas Genéticamente , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína , Estructura Terciaria de Proteína/genética , ARN Interferente Pequeño/genética , Relación Estructura-Actividad
12.
Biomol NMR Assign ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38907837

RESUMEN

Signalosomes are high-order protein machineries involved in complex mechanisms controlling regulated immune defense and cell death execution. The immune response is initiated by the recognition of exogeneous or endogenous signals, triggering the signalosome assembly process. The final step of signalosome fate often involves membrane-targeting and activation of pore-forming execution domains, leading to membrane disruption and ultimately cell death. Such cell death-inducing domains have been thoroughly characterized in plants, mammals and fungi, notably for the fungal cell death execution protein domain HeLo. However, little is known on the mechanisms of signalosome-based immune response in bacteria, and the conformation of cell death executors in bacterial signalosomes is still poorly characterized. We recently uncovered the existence of NLR signalosomes in various multicellular bacteria and used genome mining approaches to identify putative cell death executors in Streptomyces olivochromogenes. These proteins contain a C-terminal amyloid domain involved in signal transmission and a N-terminal domain, termed BELL for Bacteria analogous to fungal HeLL (HeLo-like), presumably responsible for membrane-targeting, pore-forming and cell death execution. In the present study, we report the high yield expression of S. olivochromogenes BELL2 and its characterization by solution NMR spectroscopy. BELL is folded in solution and we report backbone and sidechain assignments. We identified five α-helical secondary structure elements and a folded core much smaller than its fungal homolog HeLo. This study constitutes the first step toward the NMR investigation of the full-length protein assembly and its membrane targeting.

13.
J Struct Biol ; 184(3): 438-44, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24161603

RESUMEN

Vitamin B1 is an essential compound in all organisms acting as a cofactor in key metabolic reactions. It is formed by the condensation of two independently biosynthesized molecules referred to as the pyrimidine and thiazole moieties. In bacteria and plants, the biosynthesis of the pyrimidine moiety, 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate (HMP-P), requires a single enzyme, THIC (HMP-P synthase). The enzyme uses an iron-sulfur cluster as well as a 5'-deoxyadenosyl radical as cofactors to rearrange the 5-amino-imidazole ribonucleotide (AIR) substrate to the pyrimidine ring. So far, the only structure reported is the one from the bacteria Caulobacter crescentus. In an attempt to structurally characterize an eukaryotic HMP-P synthase, we have determined the high-resolution crystal structure of THIC from Arabidopsis thaliana at 1.6 Å. The structure is highly similar to its bacterial counterpart although several loop regions show significant differences with potential implications for the enzymatic properties. Furthermore, we have found a metal ion with octahedral coordination at the same location as a zinc ion in the bacterial enzyme. Our high-resolution atomic model shows a metal ion with multiple coordinated water molecules in the close vicinity of the substrate binding sites and is an important step toward the full characterization of the chemical rearrangement occurring during HMP-P biosynthesis.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas Hierro-Azufre/química , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína
14.
J Biol Chem ; 287(50): 42333-43, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23048037

RESUMEN

Vitamin B(1) is essential for all organisms being well recognized as a necessary cofactor for key metabolic pathways such as glycolysis, and was more recently implicated in DNA damage responses. Little is known about the enzyme responsible for the formation of the pyrimidine moiety (4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate (HMP-P) synthase). We report a structure-function study of the HMP-P synthase from yeast, THI5p. Our crystallographic structure shows that THI5p is a mix between periplasmic binding proteins and pyridoxal 5'-phosphate-dependent enzymes. Mutational and yeast complementation studies identify the key residues for HMP-P biosynthesis as well as the use of pyridoxal 5'-phosphate as a substrate rather than as a cofactor. Furthermore, we could show that iron binding to HMP-P synthase is essential for the reaction.


Asunto(s)
Hierro/química , Fosfotransferasas (Aceptor del Grupo Fosfato)/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Tiamina/biosíntesis , Cristalografía por Rayos X , Hierro/metabolismo , Mutación , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Pirimidinas/química , Pirimidinas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad , Tiamina/química , Tiamina/genética
15.
Biomol NMR Assign ; 17(1): 43-48, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36723825

RESUMEN

The initial pre-mRNA transcript in eukaryotes is processed by a large multi-protein complex in order to correctly cleave the 3' end, and to subsequently add the polyadenosine tail. This cleavage and polyadenylation specificity factor (CPSF) is composed of separate subunits, with structural information available for both isolated subunits and also larger assembled complexes. Nevertheless, certain key components of CPSF still lack high-resolution atomic data. One such region is the heterodimer formed between the first and second C-terminal domains of the endonuclease CPSF73, with those from the catalytically inactive CPSF100. Here we report the backbone and sidechain resonance assignments of a minimal C-terminal heterodimer of CPSF73-CPSF100 derived from the parasite Encephalitozoon cuniculi. The assignment process used several amino-acid specific labeling strategies, and the chemical shift values allow for secondary structure prediction.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación , Procesamiento de Término de ARN 3' , Resonancia Magnética Nuclear Biomolecular , Factor de Especificidad de Desdoblamiento y Poliadenilación/química , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Precursores del ARN/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética
16.
Open Biol ; 13(11): 230221, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37989222

RESUMEN

Eukaryotic pre-mRNA is processed by a large multiprotein complex to accurately cleave the 3' end, and to catalyse the addition of the poly(A) tail. Within this cleavage and polyadenylation specificity factor (CPSF) machinery, the CPSF73/CPSF3 endonuclease subunit directly contacts both CPSF100/CPSF2 and the scaffold protein Symplekin to form a subcomplex known as the core cleavage complex or mammalian cleavage factor. Here we have taken advantage of a stable CPSF73-CPSF100 minimal heterodimer from Encephalitozoon cuniculi to determine the solution structure formed by the first and second C-terminal domain (CTD1 and CTD2) of both proteins. We find a large number of contacts between both proteins in the complex, and notably in the region between CTD1 and CTD2. A similarity is also observed between CTD2 and the TATA-box binding protein (TBP) domains. Separately, we have determined the structure of the terminal CTD3 domain of CPSF73, which also belongs to the TBP domain family and is connected by a flexible linker to the rest of CPSF73. Biochemical assays demonstrate a key role for the CTD3 of CPSF73 in binding Symplekin, and structural models of the trimeric complex from other species allow for comparative analysis and support an overall conserved architecture.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación , Encephalitozoon cuniculi , Factores de Escisión y Poliadenilación de ARNm , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/química , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética
17.
Artículo en Inglés | MEDLINE | ID: mdl-20693667

RESUMEN

Of the known epigenetic control regulators found in plants, the Morpheus' molecule 1 (MOM1) protein is atypical in that the deletion of MOM1 does not affect the level of epigenetic marks controlling the transcriptional status of the genome. A short 197-amino-acid fragment of the MOM1 protein sequence can complement MOM1 deletion when coupled to a nuclear localization signal, suggesting that this region contains a functional domain that compensates for the loss of the full-length protein. Numerous constructs centred on the highly conserved MOM1 motif 2 (CMM2) present in these 197 residues have been generated and expressed in Escherichia coli. Following purification and crystallization screening, diamond-shaped single crystals were obtained that diffracted to approximately 3.2 A resolution. They belonged to the trigonal space group P3(1)21 (or P3(2)21), with unit-cell parameters a=85.64, c=292.74 A. Structure determination is ongoing.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/química , Proteínas Nucleares/química , Factores de Transcripción/química , ATPasas Asociadas con Actividades Celulares Diversas , Secuencias de Aminoácidos , Proteínas de Arabidopsis/genética , Cristalización , Cristalografía por Rayos X , Expresión Génica , Proteínas Nucleares/genética , Factores de Transcripción/genética
18.
Biochimie ; 164: 105-110, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30930282

RESUMEN

Pre-mRNA 3'-end maturation is achieved by a mechanism requiring four different protein complexes assembled from approximately twenty factors. A global understanding of this essential process is still missing due to the inability to structurally characterize the entire complexes, even though structures of the isolated factors have been obtained. In this review, we summarize recent findings regarding the atomic description of one of the major players, the Cleavage and Polyadenylation Specificity Factor complex (CPSF in human, CPF in yeast). These data provide information on the architecture adopted by the major components of this complex, and on its capacity to recognize the polyadenylation signal sequence.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación/química , Factor de Estimulación del Desdoblamiento/química , ARN Mensajero/metabolismo , Proteínas Fúngicas/química , Humanos , Poliadenilación , Unión Proteica , Levaduras/genética , Levaduras/metabolismo
19.
Acta Crystallogr D Struct Biol ; 75(Pt 4): 400-415, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30988257

RESUMEN

Pseudoenzymes have burst into the limelight recently as they provide another dimension to regulation of cellular protein activity. In the eudicot plant lineage, the pseudoenzyme PDX1.2 and its cognate enzyme PDX1.3 interact to regulate vitamin B6 biosynthesis. This partnership is important for plant fitness during environmental stress, in particular heat stress. PDX1.2 increases the catalytic activity of PDX1.3, with an overall increase in vitamin B6 biosynthesis. However, the mechanism by which this is achieved is not known. In this study, the Arabidopsis thaliana PDX1.2-PDX1.3 complex was crystallized in the absence and presence of ligands, and attempts were made to solve the X-ray structures. Three PDX1.2-PDX1.3 complex structures are presented: the PDX1.2-PDX1.3 complex as isolated, PDX1.2-PDX1.3-intermediate (in the presence of substrates) and a catalytically inactive complex, PDX1.2-PDX1.3-K97A. Data were also collected from a crystal of a selenomethionine-substituted complex, PDX1.2-PDX1.3-SeMet. In all cases the protein complexes assemble as dodecamers, similar to the recently reported individual PDX1.3 homomer. Intriguingly, the crystals of the protein complex are statistically disordered owing to the high degree of structural similarity of the individual PDX1 proteins, such that the resulting configuration is a composite of both proteins. Despite the differential methionine content, selenomethionine substitution of the PDX1.2-PDX1.3 complex did not resolve the problem. Furthermore, a comparison of the catalytically competent complex with a noncatalytic complex did not facilitate the resolution of the individual proteins. Interestingly, another catalytic lysine in PDX1.3 (Lys165) that pivots between the two active sites in PDX1 (P1 and P2), and the corresponding glutamine (Gln169) in PDX1.2, point towards P1, which is distinctive to the initial priming for catalytic action. This state was previously only observed upon trapping PDX1.3 in a catalytically operational state, as Lys165 points towards P2 in the resting state. Overall, the study shows that the integration of PDX1.2 into a heteromeric dodecamer assembly with PDX1.3 does not cause a major structural deviation from the overall architecture of the homomeric complex. Nonetheless, the structure of the PDX1.2-PDX1.3 complex highlights enhanced flexibility in key catalytic regions for the initial steps of vitamin B6 biosynthesis. This report highlights what may be an intrinsic limitation of X-ray crystallography in the structural investigation of pseudoenzymes.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Liasas de Carbono-Nitrógeno/química , Liasas de Carbono-Nitrógeno/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular , Unión Proteica , Conformación Proteica , Vitamina B 6/metabolismo
20.
J Am Chem Soc ; 130(26): 8116-7, 2008 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-18533652

RESUMEN

The thiamine pyrophosphate (TPP)-sensing riboswitch is the only riboswitch found in eukaryotes. In plants, TPP regulates its own production by binding to the 3' untranslated region of the mRNA encoding ThiC, a critical enzyme in thiamine biosynthesis, which promotes the formation of an unstable splicing variant. In order to better understand the molecular basis of TPP-analogue binding to the eukaryotic TPP-responsive riboswitch, we have determined the crystal structures of the Arabidopsis thaliana TPP-riboswitch in complex with oxythiamine pyrophosphate (OTPP) and with the antimicrobial compound pyrithiamine pyrophosphate (PTPP). The OTPP-riboswitch complex reveals that the pyrimidine ring of OTPP is stabilized in its enol form in order to retain key interactions with guanosine 28 of the riboswitch previously observed in the TPP complex. The structure of PTPP in complex with the riboswitch shows that the base moiety of guanosine 60 undergoes a conformational change to cradle the pyridine ring of the PTPP. Structural information from these complexes has implications for the design of novel antimicrobials targeting TPP-sensing riboswitches.


Asunto(s)
ARN Mensajero/metabolismo , Tiamina Pirofosfato/análogos & derivados , Tiamina Pirofosfato/antagonistas & inhibidores , Arabidopsis , Sitios de Unión , Cristalografía por Rayos X , Diseño de Fármacos , Células Eucariotas , Retroalimentación Fisiológica , ARN Mensajero/fisiología , Tiamina Pirofosfato/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA