Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 543(7645): 411-415, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28300096

RESUMEN

Aviation-related aerosol emissions contribute to the formation of contrail cirrus clouds that can alter upper tropospheric radiation and water budgets, and therefore climate. The magnitude of air-traffic-related aerosol-cloud interactions and the ways in which these interactions might change in the future remain uncertain. Modelling studies of the present and future effects of aviation on climate require detailed information about the number of aerosol particles emitted per kilogram of fuel burned and the microphysical properties of those aerosols that are relevant for cloud formation. However, previous observational data at cruise altitudes are sparse for engines burning conventional fuels, and no data have previously been reported for biofuel use in-flight. Here we report observations from research aircraft that sampled the exhaust of engines onboard a NASA DC-8 aircraft as they burned conventional Jet A fuel and a 50:50 (by volume) blend of Jet A fuel and a biofuel derived from Camelina oil. We show that, compared to using conventional fuels, biofuel blending reduces particle number and mass emissions immediately behind the aircraft by 50 to 70 per cent. Our observations quantify the impact of biofuel blending on aerosol emissions at cruise conditions and provide key microphysical parameters, which will be useful to assess the potential of biofuel use in aviation as a viable strategy to mitigate climate change.


Asunto(s)
Aeronaves/instrumentación , Biocombustibles/análisis , Material Particulado/análisis , Emisiones de Vehículos/análisis , Emisiones de Vehículos/prevención & control , Aerosoles/análisis , Aerosoles/química , Calentamiento Global/prevención & control , Efecto Invernadero/prevención & control , Material Particulado/química
2.
Sci Data ; 10(1): 471, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474611

RESUMEN

In-situ marine cloud droplet number concentrations (CDNCs), cloud condensation nuclei (CCN), and CCN proxies, based on particle sizes and optical properties, are accumulated from seven field campaigns: ACTIVATE; NAAMES; CAMP2EX; ORACLES; SOCRATES; MARCUS; and CAPRICORN2. Each campaign involves aircraft measurements, ship-based measurements, or both. Measurements collected over the North and Central Atlantic, Indo-Pacific, and Southern Oceans, represent a range of clean to polluted conditions in various climate regimes. With the extensive range of environmental conditions sampled, this data collection is ideal for testing satellite remote detection methods of CDNC and CCN in marine environments. Remote measurement methods are vital to expanding the available data in these difficult-to-reach regions of the Earth and improving our understanding of aerosol-cloud interactions. The data collection includes particle composition and continental tracers to identify potential contributing CCN sources. Several of these campaigns include High Spectral Resolution Lidar (HSRL) and polarimetric imaging measurements and retrievals that will be the basis for the next generation of space-based remote sensors and, thus, can be utilized as satellite surrogates.

3.
J Geophys Res Atmos ; 127(21): e2022JD037201, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36590057

RESUMEN

Ångström exponents (α) allow reconstruction of aerosol optical spectra over a broad range of wavelengths from measurements at two or more wavelengths. Hyperspectral measurements of atmospheric aerosols provide opportunities to probe measured spectra for information inaccessible from only a few wavelengths. Four sets of hyperspectral in situ aerosol optical coefficients (aerosol-phase total extinction, σ ext, and absorption, σ abs; liquid-phase soluble absorption from methanol, σ MeOH-abs, and water, σ DI-abs, extracts) were measured from biomass burning aerosols (BBAs). Hyperspectral single scattering albedo (ω), calculated from σ ext and σ abs, provide spectral resolution over a wide spectral range rare for this optical parameter. Observed spectral shifts between σ abs and σ MeOH-abs/σ DI-abs argue in favor of measuring σ abs rather than reconstructing it from liquid extracts. Logarithmically transformed spectra exhibited curvature better fit by second-order polynomials than linear α. Mapping second order fit coefficients (a 1, a 2) revealed samples from a given fire tended to cluster together, that is, aerosol spectra from a given fire were similar to each other and somewhat distinct from others. Separation in (a 1, a 2) space for spectra with the same α suggest additional information in second-order parameterization absent from the linear fit. Spectral features found in the fit residuals indicate more information in the measured spectra than captured by the fits. Above-detection σ MeOH-abs at 0.7 µm suggests assuming all absorption at long visible wavelengths is BC to partition absorption between BC and brown carbon (BrC) overestimates BC and underestimates BrC across the spectral range. Hyperspectral measurements may eventually discriminate BBA among fires in different ecosystems under variable conditions.

4.
Sci Data ; 4: 170198, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29257135

RESUMEN

We present ground-based, advected aircraft engine emissions from flights taking off at Los Angeles International Airport. 275 discrete engine take-off plumes were observed on 18 and 25 May 2014 at a distance of 400 m downwind of the runway. CO2 measurements are used to convert the aerosol data into plume-average emissions indices that are suitable for modelling aircraft emissions. Total and non-volatile particle number EIs are of order 1016-1017 kg-1 and 1014-1016 kg-1, respectively. Black-carbon-equivalent particle mass EIs vary between 175-941 mg kg-1 (except for the GE GEnx engines at 46 mg kg-1). Aircraft tail numbers recorded for each take-off event are used to incorporate aircraft- and engine-specific parameters into the data set. Data acquisition and processing follow standard methods for quality assurance. A unique aspect of the data set is the mapping of aerosol concentration time series to integrated plume EIs, aircraft and engine specifications, and manufacturer-reported engine emissions certifications. The integrated data enable future studies seeking to understand and model aircraft emissions and their impact on air quality.

5.
J Geophys Res Atmos ; 121(12): 7079-7087, 2016 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-27867782

RESUMEN

The Rim Fire of 2013, the third largest area burned by fire recorded in California history, is simulated by a climate model coupled with a size-resolved aerosol model. Modeled aerosol mass, number, and particle size distribution are within variability of data obtained from multiple-airborne in situ measurements. Simulations suggest that Rim Fire smoke may block 4-6% of sunlight energy reaching the surface, with a dimming efficiency around 120-150 W m-2 per unit aerosol optical depth in the midvisible at 13:00-15:00 local time. Underestimation of simulated smoke single scattering albedo at midvisible by 0.04 suggests that the model overestimates either the particle size or the absorption due to black carbon. This study shows that exceptional events like the 2013 Rim Fire can be simulated by a climate model with 1° resolution with overall good skill, although that resolution is still not sufficient to resolve the smoke peak near the source region.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA