Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Alzheimers Dement ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770829

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) pathology is defined by ß-amyloid (Aß) plaques and neurofibrillary tau, but Lewy bodies (LBs; 𝛼-synuclein aggregates) are a common co-pathology for which effective biomarkers are needed. METHODS: A validated α-synuclein Seed Amplification Assay (SAA) was used on recent cerebrospinal fluid (CSF) samples from 1638 Alzheimer's Disease Neuroimaging Initiative (ADNI) participants, 78 with LB-pathology confirmation at autopsy. We compared SAA outcomes with neuropathology, Aß and tau biomarkers, risk-factors, genetics, and cognitive trajectories. RESULTS: SAA showed 79% sensitivity and 97% specificity for LB pathology, with superior performance in identifying neocortical (100%) compared to limbic (57%) and amygdala-predominant (60%) LB-pathology. SAA+ rate was 22%, increasing with disease stage and age. Higher Aß burden but lower CSF p-tau181 associated with higher SAA+ rates, especially in dementia. SAA+ affected cognitive impairment in MCI and Early-AD who were already AD biomarker positive. DISCUSSION: SAA is a sensitive, specific marker for LB-pathology. Its increase in prevalence with age and AD stages, and its association with AD biomarkers, highlights the clinical importance of α-synuclein co-pathology in understanding AD's nature and progression. HIGHLIGHTS: SAA shows 79% sensitivity, 97% specificity for LB-pathology detection in AD. SAA positivity prevalence increases with disease stage and age. Higher Aß burden, lower CSF p-tau181 linked with higher SAA+ rates in dementia. SAA+ impacts cognitive impairment in early disease stages. Study underpins need for wider LB-pathology screening in AD treatment.

2.
Alzheimers Dement ; 19(12): 5605-5619, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37288753

RESUMEN

INTRODUCTION: How to detect patterns of greater tau burden and accumulation is still an open question. METHODS: An unsupervised data-driven whole-brain pattern analysis of longitudinal tau positron emission tomography (PET) was used first to identify distinct tau accumulation profiles and then to build baseline models predictive of tau-accumulation type. RESULTS: The data-driven analysis of longitudinal flortaucipir PET from studies done by the Alzheimer's Disease Neuroimaging Initiative, Avid Pharmaceuticals, and Harvard Aging Brain Study (N = 348 cognitively unimpaired, N = 188 mild cognitive impairment, N = 77 dementia), yielded three distinct flortaucipir-progression profiles: stable, moderate accumulator, and fast accumulator. Baseline flortaucipir levels, amyloid beta (Aß) positivity, and clinical variables, identified moderate and fast accumulators with 81% and 95% positive predictive values, respectively. Screening for fast tau accumulation and Aß positivity in early Alzheimer's disease, compared to Aß positivity with variable tau progression profiles, required 46% to 77% lower sample size to achieve 80% power for 30% slowing of clinical decline. DISCUSSION: Predicting tau progression with baseline imaging and clinical markers could allow screening of high-risk individuals most likely to benefit from a specific treatment regimen.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides , Proteínas tau , Tomografía de Emisión de Positrones/métodos , Disfunción Cognitiva/diagnóstico por imagen
3.
J Biol Chem ; 290(17): 10994-1007, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25752604

RESUMEN

Venoms of the sicariid spiders contain phospholipase D enzyme toxins that can cause severe dermonecrosis and even death in humans. These enzymes convert sphingolipid and lysolipid substrates to cyclic phosphates by activating a hydroxyl nucleophile present in both classes of lipid. The most medically relevant substrates are thought to be sphingomyelin and/or lysophosphatidylcholine. To better understand the substrate preference of these toxins, we used (31)P NMR to compare the activity of three related but phylogenetically diverse sicariid toxins against a diverse panel of sphingolipid and lysolipid substrates. Two of the three showed significantly faster turnover of sphingolipids over lysolipids, and all three showed a strong preference for positively charged (choline and/or ethanolamine) over neutral (glycerol and serine) headgroups. Strikingly, however, the enzymes vary widely in their preference for choline, the headgroup of both sphingomyelin and lysophosphatidylcholine, versus ethanolamine. An enzyme from Sicarius terrosus showed a strong preference for ethanolamine over choline, whereas two paralogous enzymes from Loxosceles arizonica either preferred choline or showed no significant preference. Intrigued by the novel substrate preference of the Sicarius enzyme, we solved its crystal structure at 2.1 Å resolution. The evolution of variable substrate specificity may help explain the reduced dermonecrotic potential of some natural toxin variants, because mammalian sphingolipids use primarily choline as a positively charged headgroup; it may also be relevant for sicariid predatory behavior, because ethanolamine-containing sphingolipids are common in insect prey.


Asunto(s)
Proteínas de Artrópodos/química , Fosfolipasa D/química , Venenos de Araña/química , Arañas/enzimología , Animales , Proteínas de Artrópodos/metabolismo , Cristalografía por Rayos X , Lípidos , Resonancia Magnética Nuclear Biomolecular , Fosfolipasa D/metabolismo , Venenos de Araña/metabolismo , Especificidad por Sustrato/fisiología
4.
J Proteome Res ; 13(2): 817-35, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24303891

RESUMEN

Spiders from the family Scytodidae have a unique prey capturing technique: they spit a zig-zagged silken glue to tether prey to a surface. Effectiveness of this sticky mixture is based on a combination of contraction and adhesion, trapping prey until the spider immobilizes it by envenomation and then feeds. We identify components expressed in Scytodes thoracica venom glands using combined transcriptomic and proteomic analyses. These include homologues of toxic proteins astacin metalloproteases and potentially toxic proteins including venom allergen, longistatin, and translationally controlled tumor protein (TCTP). We classify 19 distinct groups of candidate peptide toxins; 13 of these were detected in the venom, making up 35% of the proteome. Six have significant similarity to toxins from spider species spanning mygalomorph and nonhaplogyne araneomorph lineages, suggesting their expression in venom is phylogenetically widespread. Twelve peptide toxin groups have homologues in venom gland transcriptomes of other haplogynes. Of the transcripts, approximately 50% encode glycine-rich peptides that may contribute to sticky fibers in Scytodes spit. Fifty-one percent of the identified venom proteome is a family of proteins that is homologous to sequences from Drosophila sp. and Latrodectus hesperus with uncharacterized function. Characterization of these components holds promise for discovering new functional activity.


Asunto(s)
Saliva/metabolismo , Venenos de Araña/metabolismo , Secuencia de Aminoácidos , Animales , Datos de Secuencia Molecular , Filogenia , Conducta Predatoria , Homología de Secuencia de Aminoácido , Venenos de Araña/clasificación , Arañas
5.
Mol Biol Evol ; 26(3): 547-66, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19042943

RESUMEN

The venom enzyme sphingomyelinase D (SMase D) in the spider family Sicariidae (brown or fiddleback spiders [Loxosceles] and six-eyed sand spiders [Sicarius]) causes dermonecrosis in mammals. SMase D is in a gene family with multiple venom-expressed members that vary in functional specificity. We analyze molecular evolution of this family and variation in SMase D activity among crude venoms using a data set that represents the phylogenetic breadth of Loxosceles and Sicarius. We isolated a total of 190 nonredundant nucleotide sequences encoding 168 nonredundant amino acid sequences of SMase D homologs from 21 species. Bayesian phylogenies support two major clades that we name alpha and beta, within which we define seven and three subclades, respectively. Sequences in the alpha clade are exclusively from New World Loxosceles and Loxosceles rufescens and include published genes for which expression products have SMase D and dermonecrotic activity. The beta clade includes paralogs from New World Loxosceles that have no, or reduced, SMase D and no dermonecrotic activity and also paralogs from Sicarius and African Loxosceles of unknown activity. Gene duplications are frequent, consistent with a birth-and-death model, and there is evidence of purifying selection with episodic positive directional selection. Despite having venom-expressed SMase D homologs, venoms from New World Sicarius have reduced, or no, detectable SMase D activity, and Loxosceles in the Southern African spinulosa group have low SMase D activity. Sequence conservation mapping shows >98% conservation of proposed catalytic residues of the active site and around a plug motif at the opposite end of the TIM barrel, but alpha and beta clades differ in conservation of key residues surrounding the apparent substrate binding pocket. Based on these combined results, we propose an inclusive nomenclature for the gene family, renaming it SicTox, and discuss emerging patterns of functional diversification.


Asunto(s)
Evolución Molecular , Hidrolasas Diéster Fosfóricas/genética , Venenos de Araña/enzimología , Animales , Duplicación de Gen , Familia de Multigenes , Filogenia , Selección Genética
6.
Front Ecol Evol ; 72019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33235882

RESUMEN

Pholcid spiders (Araneae: Pholcidae), officially "cellar spiders" but popularly known as "daddy long-legs," are renown for the potential of deadly toxic venom, even though venom composition and potency has never formally been studied. Here we detail the venom composition of male Physocyclus mexicanus using proteomic analyses and venom-gland transcriptomes ("venomics"). We also analyze the venom's potency on insects, and assemble available evidence regarding mammalian toxicity. The majority of the venom (51% of tryptic polypeptides and 62% of unique tryptic peptides) consists of proteins homologous to known venom toxins including enzymes (astacin metalloproteases, serine proteases and metalloendopeptidases, particularly neprilysins) and venom peptide neurotoxins. We identify 17 new groups of peptides (U1-17-PHTX) most of which are homologs of known venom peptides and are predicted to have an inhibitor cysteine knot fold; of these, 13 are confirmed in the proteome. Neprilysins (M13 peptidases), and astacins (M12 peptidases) are the most abundant venom proteins, respectively representing 15 and 11% of the individual proteins and 32 and 20% of the tryptic peptides detected in crude venom. Comparative evidence suggests that the neprilysin gene family is expressed in venoms across a range of spider taxa, but has undergone an expansion in the venoms of pholcids and may play a central functional role in these spiders. Bioassays of crude venoms on crickets resulted in an effective paralytic dose of 3.9 µg/g, which is comparable to that of crude venoms of Plectreurys tristis and other Synspermiata taxa. However, crickets exhibit flaccid paralysis and regions of darkening that are not observed after P. tristis envenomation. Documented bites on humans make clear that while these spiders can bite, the typical result is a mild sting with no long-lasting effects. Together, the evidence we present indicates pholcid venoms are a source of interesting new peptides and proteins, and effects of bites on humans and other mammals are inconsequential.

7.
PeerJ ; 6: e4691, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29876146

RESUMEN

Venom has been associated with the ecological success of many groups of organisms, most notably reptiles, gastropods, and arachnids. In some cases, diversification has been directly linked to tailoring of venoms for dietary specialization. Spiders in particular are known for their diverse venoms and wide range of predatory behaviors, although there is much to learn about scales of variation in venom composition and function. The current study focuses on venom characteristics in different sexes within a species of spider. We chose the genus Tetragnatha (Tetragnathidae) because of its unusual courtship behavior involving interlocking of the venom delivering chelicerae (i.e., the jaws), and several species in the genus are already known to have sexually dimorphic venoms. Here, we use transcriptome and proteome analyses to identify venom components that are dimorphic in Tetragnatha versicolor. We present cDNA sequences including unique, male-specific high molecular weight proteins that have remote, if any, detectable similarity to known venom components in spiders or other venomous lineages and have no detectable homologs in existing databases. While the function of these proteins is not known, their presence in association with the cheliceral locking mechanism during mating together with the presence of prolonged male-male mating attempts in a related, cheliceral-locking species (Doryonychus raptor) lacking the dimorphism suggests potential for a role in sexual communication.

8.
Genetics ; 174(2): 679-91, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16888326

RESUMEN

In eukaryotes, 40S and 60S ribosomal subunits are assembled in the nucleus and exported to the cytoplasm independently of one another. Nuclear export of the 60S requires the adapter protein Nmd3, but no analogous adapter has been identified for the 40S. Ltv1 is a nonessential, nonribosomal protein that is required for 40S subunit biogenesis in yeast. Cells lacking LTV1 grow slowly, are hypersensitive to inhibitors of protein synthesis, and produce about half as many 40S subunits as do wild-type cells. Ltv1 interacts with Crm1, co-sediments in sucrose gradients with 43S/40S subunits, and copurifies with late 43S particles. Here we show that Ltv1 shuttles between nucleus and cytoplasm in a Crm1-dependent manner and that it contains a functional NES that is sufficient to direct the export of an NLS-containing reporter. Small subunit export is reduced in Deltaltv1 mutants, as judged by the altered distribution of the 5'-ITS1 rRNA and the 40S ribosomal protein RpS3. Finally, we show a genetic interaction between LTV1 and YRB2, a gene that encodes a Ran-GTP-, Crm1-binding protein that facilitates the small subunit export. We propose that Ltv1 functions as one of several possible adapter proteins that link the nuclear export machinery to the small subunit.


Asunto(s)
Núcleo Celular/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Núcleo Celular/genética , Procesamiento Postranscripcional del ARN/genética , ARN Ribosómico/genética , Ribosomas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
Genetics ; 168(4): 1877-89, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15611164

RESUMEN

In the yeast S. cerevisiae, ribosome assembly is linked to environmental conditions by the coordinate transcriptional regulation of genes required for ribosome biogenesis. In this study we show that two nonessential stress-responsive genes, YAR1 and LTV1, function in 40S subunit production. We provide genetic and biochemical evidence that Yar1, a small ankyrin-repeat protein, physically interacts with RpS3, a component of the 40S subunit, and with Ltv1, a protein recently identified as a substoichiometric component of a 43S preribosomal particle. We demonstrate that cells lacking YAR1 or LTV1 are hypersensitive to particular protein synthesis inhibitors and exhibit aberrant polysome profiles, with a reduced absolute number of 40S subunits and an excess of free 60S subunits. Surprisingly, both mutants are also hypersensitive to a variety of environmental stress conditions. Overexpression of RPS3 suppresses both the stress sensitivity and the ribosome biogenesis defect of Deltayar1 mutants, but does not suppress either defect in Deltaltv1 mutants. We propose that YAR1 and LTV1 play distinct, nonessential roles in 40S subunit production. The stress-sensitive phenotypes of strains lacking these genes reveal a hitherto unknown link between ribosome biogenesis factors and environmental stress sensitivity.


Asunto(s)
Proteínas Ribosómicas/genética , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Mutación , Fenotipo , Inhibidores de la Síntesis de la Proteína/farmacología , Proteínas Ribosómicas/antagonistas & inhibidores , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Toxicon ; 93: 11-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25449105

RESUMEN

The medical importance of Loxosceles spiders has promoted extensive research on different aspects of their venoms. Most of the reported cases of loxoscelism have occurred in the Americas, and thus, much work has focused on North and South American Loxosceles species. Interestingly, loxoscelism cases are rare in the Mediterranean Basin although Loxosceles rufescens, endemic to the Mediterranean, is an abundant spider even in human-altered areas. Thus, it has been suggested that the venom of L. rufescens could be of less medical relevance than that of its congeners. In this study, we challenge this hypothesis by using multiple approaches to study venom variation in selected species and lineages from the Mediterranean Basin and the Canary Islands. We found that SMase D activity, the key bioactive component of Loxosceles venom, is comparable to American species that are confirmed to have medically relevant bites. The venom protein composition using SDS-PAGE presents some differences among regional Loxosceles taxa in banding pattern and intensity, mostly between the Canarian and L. rufescens lineages. Differences between these species also exist in the expression of different paralogs of the SicTox gene family, with the Canarian species being less diverse. In conclusion, our results do not support the challenged hypothesis, and suggest that venom of these species may indeed be as potent as other Loxosceles species. Pending confirmation of loxoscelism with direct evidence of Loxosceles bites with species identification by professionals, Loxosceles in the Mediterranean region should conservatively be considered medically relevant taxa.


Asunto(s)
Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/toxicidad , Filogenia , Picaduras de Arañas/epidemiología , Picaduras de Arañas/fisiopatología , Venenos de Araña/enzimología , Secuencia de Bases , Teorema de Bayes , Clonación Molecular , Cartilla de ADN/genética , ADN Complementario/genética , Electroforesis en Gel de Poliacrilamida , Humanos , Región Mediterránea/epidemiología , Modelos Genéticos , Datos de Secuencia Molecular , Oxazinas , Análisis de Secuencia de ADN , España/epidemiología , Especificidad de la Especie , Venenos de Araña/toxicidad
11.
Structure ; 23(7): 1283-92, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26073605

RESUMEN

Arthropod venoms consist primarily of peptide toxins that are injected into their prey with devastating consequences. Venom proteins are thought to be recruited from endogenous body proteins and mutated to yield neofunctionalized toxins with remarkable affinity for specific subtypes of ion channels and receptors. However, the evolutionary history of venom peptides remains poorly understood. Here we show that a neuropeptide hormone has been convergently recruited into the venom of spiders and centipedes and evolved into a highly stable toxin through divergent modification of the ancestral gene. High-resolution structures of representative hormone-derived toxins revealed they possess a unique structure and disulfide framework and that the key structural adaptation in weaponization of the ancestral hormone was loss of a C-terminal α helix, an adaptation that occurred independently in spiders and centipedes. Our results raise a new paradigm for toxin evolution and highlight the value of structural information in providing insight into protein evolution.


Asunto(s)
Proteínas de Artrópodos/genética , Proteínas del Tejido Nervioso/genética , Venenos de Araña/genética , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/farmacología , Dípteros/efectos de los fármacos , Evolución Molecular , Datos de Secuencia Molecular , Filogenia , Estabilidad Proteica , Estructura Secundaria de Proteína , Venenos de Araña/química , Venenos de Araña/farmacología , Arañas/genética
12.
J Venom Res ; 5: 33-47, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25400903

RESUMEN

Spider venoms are complex cocktails rich in peptides, proteins and organic molecules that collectively act to immobilize prey. Venoms of the primitive hunting spider, Plectreurys tristis, have numerous neurotoxic peptides called "plectoxins" (PLTX), a unique acylpolyamine called bis(agmatine)oxalamide, and larger unidentified protein components. These spiders also have unconventional multi-lobed venom glands. Inspired by these unusual characteristics and their phylogenetic position as Haplogynes, we have partially characterized the venome of P. tristis using combined transcriptomic and proteomic methods. With these analyses we found known venom neurotoxins U1-PLTX-Pt1a, U3-PLTX-Pt1a, and we discovered new groups of potential neurotoxins, expanding the U1- and ω-PLTX families and adding U4-through U9-PLTX as six new groups. The venom also contains proteins that are homologs of astacin metalloproteases that, combined with venom peptides, make up 94% of components detected in crude venom, while the remaining 6% is a single undescribed protein with unknown function. Other proteins detected in the transcriptome were found to be members of conserved gene families and make up 20% of the transcripts. These include cDNA sequences that match venom proteins from Mesobuthus and Hottentotta scorpions, Loxosceles and Dysdera spiders, and also salivary and secreted peptide sequences from Ixodes, Amblyomma and Rhipicephalus ticks. Finally, we show that crude venom has neurotoxic effects and an effective paralytic dose on crickets of 3.3µg/gm.

13.
PLoS One ; 8(1): e54401, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23342149

RESUMEN

We present solution-state NMR structures for two putative venom peptides from Sicarius dolichocephalus. These peptides were identified from cDNA libraries created from venom gland mRNA and then recombinantly expressed. They are the first structures from any species of Sicarius spiders, and the first peptide structures for any haplogyne spiders. These peptides are homologous to one another, and while they have at most only 20% sequence identity with known venom peptides their structures follow the inhibitor cystine knot motif that has been found in a broad range of venom peptides.


Asunto(s)
Péptidos/química , Venenos de Araña/química , Animales , Espectroscopía de Resonancia Magnética , Arañas
14.
PLoS One ; 8(8): e72372, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24009677

RESUMEN

Venoms of brown spiders in the genus Loxosceles contain phospholipase D enzyme toxins that can cause severe dermonecrosis and even death in humans. These toxins cleave the substrates sphingomyelin and lysophosphatidylcholine in mammalian tissues, releasing the choline head group. The other products of substrate cleavage have previously been reported to be monoester phospholipids, which would result from substrate hydrolysis. Using (31)P NMR and mass spectrometry we demonstrate that recombinant toxins, as well as whole venoms from diverse Loxosceles species, exclusively catalyze transphosphatidylation rather than hydrolysis, forming cyclic phosphate products from both major substrates. Cyclic phosphates have vastly different biological properties from their monoester counterparts, and they may be relevant to the pathology of brown spider envenomation.


Asunto(s)
Lisofosfatidilcolinas/química , Fosfatos/química , Fosfolipasa D/química , Esfingomielinas/química , Venenos de Araña/química , Animales , Araña Reclusa Parda/química , Espectrometría de Masas , Fosfolipasa D/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
15.
Toxicon ; 60(3): 265-71, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22561243

RESUMEN

Spider venoms have evolved over hundreds of millions of years with a primary role of immobilizing prey. Sphingomyelinase D (SMase D) and homologs in the SicTox gene family are the most abundantly expressed toxic protein in venoms of Loxosceles and Sicarius spiders (Sicariidae). While SMase D is well known to cause dermonecrotic lesions in mammals, little work has investigated the bioactivity of this enzyme in its presumed natural role of immobilizing insect prey. We expressed and purified recombinant SMase D from Loxosceles arizonica (Laz-SMase D) and compared its enzymatic and insecticidal activity to that of crude venom. SMase D enzymatic activities of purified protein and crude venom from the same species were indistinguishable. In addition, SMase D and crude venom have comparable and high potency in immobilization assays on crickets. These data indicate that SMase D is a potent insecticidal toxin, the role for which it presumably evolved.


Asunto(s)
Proteínas de Artrópodos/farmacología , Hidrolasas Diéster Fosfóricas/farmacología , Venenos de Araña/enzimología , Arañas/enzimología , Animales , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/aislamiento & purificación , Proteínas de Artrópodos/metabolismo , Conducta Animal , Conducta Alimentaria , Gryllidae , Inmovilización , Insecticidas , Dosificación Letal Mediana , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/aislamiento & purificación , Hidrolasas Diéster Fosfóricas/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Especificidad de la Especie , Esfingomielinas/metabolismo , Venenos de Araña/farmacología
16.
Toxicon ; 55(7): 1274-82, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20144895

RESUMEN

Spider venoms are cocktails of toxic proteins and peptides, whose composition varies at many levels. Understanding patterns of variation in chemistry and bioactivity is fundamental for understanding factors influencing variation. The venom toxin sphingomyelinase D (SMase D) in sicariid spider venom (Loxosceles and Sicarius) causes dermonecrotic lesions in mammals. Multiple forms of venom-expressed genes with homology to SMase D are expressed in venoms of both genera. SMase D activity levels differ among major clades with American Sicarius vastly reduced relative to all Loxosceles and African Sicarius despite expression of SMase D homologs in venoms of American Sicarius. Here we report comparative analyses of protein composition and insecticidal activity of crude venoms from three Sicarius species, two from South Africa and one from Central America. Comparative 2-dimensional electrophoresis shows dense regions of proteins in the size range of SMase D in all three species, but there are differences in sizes and isoelectric points (pIs). Few proteins strictly co-migrate and there are clusters of proteins with similar pIs and molecular weights whose patterns of similarity do not necessarily reflect phylogenetic relatedness. In addition, PD(50) estimates on crickets indicate a small though significant decrease in potency of South American Sicarius venoms relative to African species.


Asunto(s)
Hidrolasas Diéster Fosfóricas/análisis , Venenos de Araña/enzimología , Arañas/enzimología , África , Américas , Animales , ADN Complementario/biosíntesis , ADN Complementario/genética , Relación Dosis-Respuesta a Droga , Electroforesis en Gel Bidimensional , Electroforesis en Gel de Poliacrilamida , Variación Genética , Gryllidae , Peso Molecular , Parálisis/inducido químicamente , Parálisis/patología , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/toxicidad , Proteínas/química , Venenos de Araña/genética , Venenos de Araña/toxicidad , Arañas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA