Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fungal Genet Biol ; 83: 103-112, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26348000

RESUMEN

The intracellular systems of detoxification are crucial for the survival of wood degrading fungi. Within these systems, glutathione transferases could play a major role since this family of enzymes is specifically extended in lignolytic fungi. In particular the Ure2p class represents one third of the total GST number in Phanerochaete chrysosporium. These proteins have been phylogenetically split into two subclasses called Ure2pA and Ure2pB. Ure2pB can be classified as Nu GSTs because of shared structural and functional features with previously characterized bacterial isoforms. Ure2pA can rather be qualified as Nu-like GSTs since they exhibit a number of differences. Ure2pA possess a classical transferase activity, a more divergent catalytic site and a higher structural flexibility for some of them, compared to Nu GSTs. The characterization of four members of this Ure2pA subclass (PcUre2pA4, PcUre2pA5, PcUre2pA6 and PcUre2pA8) revealed specific functional and structural features, suggesting that these enzymes have rapidly evolved and differentiated, probably to adapt to the complex chemical environment associated with wood decomposition.


Asunto(s)
Glutatión Transferasa/química , Glutatión Transferasa/metabolismo , Secuencia de Aminoácidos , Biodiversidad , Dominio Catalítico , Cristalografía por Rayos X , Evolución Molecular , Proteínas Fúngicas/química , Glutatión/química , Glutatión/metabolismo , Glutatión Transferasa/genética , Isoenzimas , Datos de Secuencia Molecular , Phanerochaete/clasificación , Phanerochaete/enzimología , Filogenia , Unión Proteica , Estructura Secundaria de Proteína , Alineación de Secuencia , Análisis de Secuencia de Proteína , Homología de Secuencia de Aminoácido , Madera/microbiología
2.
Appl Environ Microbiol ; 80(20): 6316-27, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25107961

RESUMEN

The first steps of wood degradation by fungi lead to the release of toxic compounds known as extractives. To better understand how lignolytic fungi cope with the toxicity of these molecules, a transcriptomic analysis of Phanerochaete chrysosporium genes was performed in the presence of oak acetonic extracts. It reveals that in complement to the extracellular machinery of degradation, intracellular antioxidant and detoxification systems contribute to the lignolytic capabilities of fungi, presumably by preventing cellular damages and maintaining fungal health. Focusing on these systems, a glutathione transferase (P. chrysosporium GTT2.1 [PcGTT2.1]) has been selected for functional characterization. This enzyme, not characterized so far in basidiomycetes, has been classified first as a GTT2 compared to the Saccharomyces cerevisiae isoform. However, a deeper analysis shows that the GTT2.1 isoform has evolved functionally to reduce lipid peroxidation by recognizing high-molecular-weight peroxides as substrates. Moreover, the GTT2.1 gene has been lost in some non-wood-decay fungi. This example suggests that the intracellular detoxification system evolved concomitantly with the extracellular ligninolytic machinery in relation to the capacity of fungi to degrade wood.


Asunto(s)
Glutatión Transferasa/metabolismo , Phanerochaete/efectos de los fármacos , Phanerochaete/genética , Extractos Vegetales/farmacología , Quercus/química , Acetona/química , Evolución Molecular , Regulación Fúngica de la Expresión Génica , Glutatión Transferasa/genética , Inactivación Metabólica , Isoenzimas , Lignina/metabolismo , Peroxidación de Lípido , Estrés Oxidativo/efectos de los fármacos , Peróxidos/química , Peróxidos/metabolismo , Phanerochaete/metabolismo , Extractos Vegetales/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Madera/microbiología
3.
Microb Biotechnol ; 6(3): 248-63, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23279857

RESUMEN

Fungal degradation of wood is mainly restricted to basidiomycetes, these organisms having developed complex oxidative and hydrolytic enzymatic systems. Besides these systems, wood-decaying fungi possess intracellular networks allowing them to deal with the myriad of potential toxic compounds resulting at least in part from wood degradation but also more generally from recalcitrant organic matter degradation. The members of the detoxification pathways constitute the xenome. Generally, they belong to multigenic families such as the cytochrome P450 monooxygenases and the glutathione transferases. Taking advantage of the recent release of numerous genomes of basidiomycetes, we show here that these multigenic families are extended and functionally related in wood-decaying fungi. Furthermore, we postulate that these rapidly evolving multigenic families could reflect the adaptation of these fungi to the diversity of their substrate and provide keys to understand their ecology. This is of particular importance for white biotechnology, this xenome being a putative target for improving degradation properties of these fungi in biomass valorization purposes.


Asunto(s)
Adaptación Fisiológica/genética , Basidiomycota/enzimología , Sistema Enzimático del Citocromo P-450/metabolismo , Glutatión Transferasa/metabolismo , Redes y Vías Metabólicas/genética , Madera/química , Madera/microbiología , Basidiomycota/genética , Basidiomycota/metabolismo , Basidiomycota/fisiología , Biodegradación Ambiental , Sistema Enzimático del Citocromo P-450/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Glutatión Transferasa/genética , Madera/metabolismo , Xenobióticos/metabolismo
4.
FEBS Lett ; 587(14): 2125-30, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23711374

RESUMEN

Glutathione transferases (GSTs) are known to transfer glutathione onto small hydrophobic molecules in detoxification reactions. The GST Ure2pB1 from Phanerochaete chrysosporium exhibits atypical features, i.e. the presence of two glutathione binding sites and a high affinity towards oxidized glutathione. Moreover, PcUre2pB1 is able to efficiently deglutathionylate GS-phenacylacetophenone. Catalysis is not mediated by the cysteines of the protein but rather by the one of glutathione and an asparagine residue plays a key role in glutathione stabilization. Interestingly PcUre2pB1 interacts in vitro with a GST of the omega class. These properties are discussed in the physiological context of wood degrading fungi.


Asunto(s)
Proteínas Fúngicas/química , Glutatión Transferasa/química , Phanerochaete/enzimología , Cristalografía por Rayos X , Ditiotreitol/química , Glutatión/química , Enlace de Hidrógeno , Insulina/química , Cinética , Modelos Moleculares , Oxidación-Reducción , Unión Proteica , Estructura Secundaria de Proteína , Sustancias Reductoras/química
5.
Int J Evol Biol ; 2011: 938308, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22164343

RESUMEN

The glutathione-S-transferase (GST) proteins represent an extended family involved in detoxification processes. They are divided into various classes with high diversity in various organisms. The Ure2p class is especially expanded in saprophytic fungi compared to other fungi. This class is subdivided into two subclasses named Ure2pA and Ure2pB, which have rapidly diversified among fungal phyla. We have focused our analysis on Basidiomycetes and used Phanerochaete chrysosporium as a model to correlate the sequence diversity with the functional diversity of these glutathione transferases. The results show that among the nine isoforms found in P. chrysosporium, two belonging to Ure2pA subclass are exclusively expressed at the transcriptional level in presence of polycyclic aromatic compounds. Moreover, we have highlighted differential catalytic activities and substrate specificities between Ure2pA and Ure2pB isoforms. This diversity of sequence and function suggests that fungal Ure2p sequences have evolved rapidly in response to environmental constraints.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA