RESUMEN
DNA logic operations are accurate and specific molecular strategies that are appreciated in target multiplexing and intelligent diagnostics. However, most of the reported DNA logic operation-based assays lack amplifiers prior to logic operation, resulting in detection limits at the subpicomolar to nanomolar level. Herein, a homogeneous and isothermal AND-logic cascade amplification strategy is demonstrated for optomagnetic biosensing of two different DNA inputs corresponding to a variant of concern sequence (containing spike L452R) and a highly conserved sequence from SARS-CoV-2. With an "amplifiers-before-operator" configuration, two input sequences are recognized by different padlock probes for amplification reactions, which generate amplicons used, respectively, as primers and templates for secondary amplification, achieving the AND-logic operation. Cascade amplification products can hybridize with detection probes grafted onto magnetic nanoparticles (MNPs), leading to hydrodynamic size increases and/or aggregation of MNPs. Real-time optomagnetic MNP analysis offers a detection limit of 8.6 fM with a dynamic detection range spanning more than 3 orders of magnitude. The accuracy, stability, and specificity of the system are validated by testing samples containing serum, salmon sperm, a single-nucleotide variant, and biases of the inputs. Clinical samples are tested with both quantitative reverse transcription-PCR and our approach, showing highly consistent measurement results.
Asunto(s)
Técnicas Biosensibles , COVID-19 , Masculino , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Técnicas de Amplificación de Ácido Nucleico/métodos , Semen/química , ADN/análisis , Técnicas Biosensibles/métodos , Límite de DetecciónRESUMEN
Blood-based biomarkers of immune checkpoint inhibitors (ICIs) response in patients with nasopharyngeal carcinoma (NPC) are lacking, so it is necessary to identify biomarkers to select NPC patients who will benefit most or least from ICIs. The absolute values of lymphocyte subpopulations, biochemical indexes, and blood routine tests were determined before ICIs-based treatments in the training cohort (n = 130). Then, the least absolute shrinkage and selection operator (Lasso) Cox regression analysis was developed to construct a prediction model. The performances of the prediction model were compared to TNM stage, treatment, and Epstein-Barr virus (EBV) DNA using the concordance index (C-index). Progression-free survival (PFS) was estimated by Kaplan-Meier (K-M) survival curve. Other 63 patients were used for validation cohort. The novel model composed of histologic subtypes, CD19+ B cells, natural killer (NK) cells, regulatory T cells, red blood cells (RBC), AST/ALT ratio (SLR), apolipoprotein B (Apo B), and lactic dehydrogenase (LDH). The C-index of this model was 0.784 in the training cohort and 0.735 in the validation cohort. K-M survival curve showed patients with high-risk scores had shorter PFS compared to the low-risk groups. For predicting immune therapy responses, the receiver operating characteristic (ROC), decision curve analysis (DCA), net reclassifcation improvement index (NRI) and integrated discrimination improvement index (IDI) of this model showed better predictive ability compared to EBV DNA. In this study, we constructed a novel model for prognostic prediction and immunotherapeutic response prediction in NPC patients, which may provide clinical assistance in selecting those patients who are likely to gain long-lasting clinical benefits to anti-PD-1 therapy.
Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Infecciones por Virus de Epstein-Barr/complicaciones , Carcinoma Nasofaríngeo/terapia , Herpesvirus Humano 4 , Inmunoterapia , Pronóstico , Antígenos CD19 , Neoplasias Nasofaríngeas/terapia , ADNRESUMEN
In the therapy of early-stage osteoarthritis, to accomplish full infiltration of subchondral bone and cartilage, and to target osteoclast and chondrocyte simultaneously remain challenges in biomaterials design. Herein, a novel hierarchical drug delivery system is introduced, with micrometer-scale outer layer spheres composed of regenerated silk fibroin, characterized by connected porous structure through the n-butanol and regenerated silk fibroin combined emulsion route and freezing method. The design effectively resists clearance from the joint cavity, ensuring stable delivery and prolonged residence time within the joint space. Additionally, the system incorporates phenylboronic acid-enriched silk fibroin nanoparticles, stabilized through chemical cross-linking, which encapsulate isoliquiritin derived from Glycyrrhiza uralensis. These nanoparticles facilitate complete penetration of the cartilage extracellular matrix, exhibit pH-responsive behavior, neutralize reactive oxygen species, and enable controlled drug release, thereby enhancing therapeutic efficacy. The in vitro and in vivo experiments both demonstrate that the composite micro/nanospheres not only inhibit osteoclastogenesis with bone loss in subchondral bone and osteophyte formation, but also mitigate chondrocytes apoptosis, reduce oxidative stress associated with cartilage degeneration, and ameliorate neuropathic hyperalgesia, with the underlying mechanisms being elucidated. The study indicates that such an injectable strategy combining organic biomaterials with Chinese medicine holds substantial promise for the treatment of early osteoarthritis.
RESUMEN
With the popularization of 5G technology and artificial intelligence, thermally conductive epoxies with self-healing ability will be widely used in flexible electronic materials. Although many compounds containing both performances have been synthesized, there is little systematic theory to explain the coordination mechanism. In this paper, alkyl chains of different lengths were introduced to epoxies to discuss the thermally conductive, the self-healing performance, and the synergistic effect. A series of electronic-grade biphenyl epoxies (4,4'-bis(oxiran-2-ylmethoxy)-1,1'-biphenyl (1), 4,4'-bis(2-(oxiran-2-yl)ethoxy)-1,1'-biphenyl (2), 4,4'-bis(3-(oxiran-2-yl)propoxy)-1,1'-biphenyl (3), and 4,4'-bis(4-(oxiran-2-yl)butoxy)-1,1'-biphenyl (4) were synthesized and characterized. Furthermore, they were cured with decanedioic acid to produce polymers. Results showed that alkyl chains can both affect the two properties, and the epoxies suitable for specific application scenarios can be prepared by adjusting the length of alkyl chains. In terms of thermal conductivity, compound 1 was a most promising material. However, compound 4 was expected to be utilized in flexible electronic devices because of its acceptable thermal conductivity, self-healing ability, transparency, and flexibility.
RESUMEN
KEY MESSAGE: The combination of a QTL on chromosome arm 4BL and Yr29 provides durable resistance with no significant yield penalty. Wheat stripe rust or yellow rust (YR), caused by Puccinia striiformis f. sp. tritici (Pst), causes substantial yield reductions globally, but losses can be minimized by using resistance genes. Chinese wheat cultivar Jing 411 (J411) has continued to display an acceptable level of adult-plant resistance (APR) to YR in varied field conditions since its release in the 1990s. A recombinant inbred line (RIL) population comprising 187 lines developed from a cross of J411 and Kenong 9204 (KN9204) was evaluated in multiple environments to identify genomic regions carrying genes for YR resistance. A total of five quantitative trait loci (QTL) on chromosome arm 1BL, 3BS, 4BL, 6BS, and 7BL from J411 and two QTL on 3DS and 7DL from KN9204 were detected using inclusive composite interval mapping with the wheat 660 K SNP array. QYr.nwafu-1BL.5 and QYr.nwafu-4BL.3 from J411 were robust and showed similar effects in all environments. QYr.nwafu-1BL.5 was likely the pleiotropic gene of Yr29/Lr46. QYr.nwafu-4BL.3 was located within a 1.0 cM interval delimited by KASP markers AX-111609222 and AX-89755491. Based on haplotype analysis, Yr29 and QYr.nwafu-4BL.3 were identified as genetic components of quantitative resistance in a number of wheat cultivars. Moreover, RILs with Yr29 and QYr.nwafu-4BL.3 individually or when combined showed higher resistance to YR in rust nurseries compared with RILs without them, and there was no negative effect of their presence on agronomic traits under rust-free conditions. These results suggest that effective polymerization strategy is important for breeding high yielding and durable resistance cultivars.
Asunto(s)
Mapeo Cromosómico , Resistencia a la Enfermedad , Fenotipo , Enfermedades de las Plantas , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Triticum , Triticum/genética , Triticum/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Cromosomas de las Plantas/genética , Puccinia/patogenicidad , Fitomejoramiento , Genes de Plantas , Ligamiento Genético , Basidiomycota/patogenicidad , Basidiomycota/fisiología , Marcadores GenéticosRESUMEN
BACKGROUND AND AIMS: The risk and pathologic factors of recurrence after endoscopic resection (ER) for superficial esophageal squamous cell carcinoma (ESCC) are inconsistent across studies. We evaluated this in a systematic review and meta-analysis. METHODS: The data of recurrence in such patients were extracted from all studies. Risk ratios (RRs) were combined using random-effects meta-analysis to assess pooled recurrence rate and pathologic risk factors. Relapse-free survival was combined using the Kaplan-Meier method to estimate the relationship between various pathologic factors and recurrence time. RESULTS: We identified 26 studies, with a total of 5100 patients and 321 with recurrences (pooled rate, 6.2%). The risk of recurrence was significantly higher in positive vertical margin (RR, 4.51; 95% confidence interval [CI], 2.16-9.44), positive horizontal margin (RR, 2.54; 95% CI, 1.57-4.13), lymphovascular invasion (LVI) (RR, 2.33; 95% CI, 1.75-3.11; P < .001), lymphatic invasion (LI) (RR, 2.24; 95% CI, 1.24-4.06), and tumor invading submucosa of ≤200 µm (SM1) (RR, 1.71; 95% CI, 1.32-2.21, compared to muscularis mucosa). Patients with LI (hazard ratio, 2.47; 95% CI, 1.24-4.90; P = .02) and LVI (HR, 2.36; 95% CI, 2.22-4.59; P = .0006) tended to have earlier recurrence after ER. CONCLUSIONS: The recurrence rate of superficial esophageal squamous cell carcinoma after ER is acceptable. Patients with positive margins, LVI, LI, and SM1 need to pay significant attention to the risk of recurrence. LI and VI should be evaluated separately. (PROSPERO CRD42023406309.).
RESUMEN
Esophageal squamous cell carcinoma (ESCC) remains a major clinical challenge due to its poor prognosis and the scarcity effective therapeutic targets. Circular RNAs (circRNAs) are crucial in cancer progression. In this study, high-throughput sequencing was employed to profile ESCC tissues, revealing that hsa_circ_0001165 is notably elevated in both ESCC tumor samples and cell lines, with its expression is positively associated with patients' TNM staging. Knockdown of hsa_circ_0001165 resulted in reduced malignant biological behavior of ESCC cells in vitro and also inhibited tumor growth in vivo. Mechanism experimental analysis found that hsa_circ_0001165 expression is positively enhanced by eukaryotic translation initiation factor 4A3 (EIF4A3). Hsa_circ_0001165 acts as a miRNA sponge for miR-381-3p, increasing the expression of tensin-3 (TNS3) through a series of related mechanism assays include dual-luciferase reporter gene, RNA Immunoprecipitation and RNA-pulldown. The downregulation in miR-381-3p expression was observed in ESCC tissues, and the cell proliferation, invasion, and migration of ESCC were suppressed. The upregulated expression of hsa_circ_0001165 modulates the miR-381-3p/TNS3 axis and promotes aggressive phenotypes of ESCC. Hsa_circ_0001165 is regarded as a encouraging biomarker and potential therapeutic target for ESCC, presenting innovative options for both diagnostic and treatment approaches.
Asunto(s)
Proliferación Celular , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Factor 4A Eucariótico de Iniciación , Regulación Neoplásica de la Expresión Génica , MicroARNs , ARN Circular , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , Línea Celular Tumoral , Factor 4A Eucariótico de Iniciación/genética , Factor 4A Eucariótico de Iniciación/metabolismo , Proliferación Celular/genética , Animales , Regulación Neoplásica de la Expresión Génica/genética , Masculino , Movimiento Celular/genética , Progresión de la Enfermedad , Ratones Desnudos , Femenino , Ratones , Persona de Mediana Edad , Ratones Endogámicos BALB C , Transducción de Señal/genética , ARN Helicasas DEAD-boxRESUMEN
This paper studies a computational approach aimed at establishing equivalent dynamical responses within oscillatory impacting systems subject to soft and rigid constraints. The proposed method incorporates an adaptive differential evolution algorithm with the Metropolis criterion to determine the stiffness and damping parameters of the soft constraint for a prescribed coefficient of restitution governing the rigid constraint. The proposed algorithm aims to establish an equivalent dynamical response of the two models based on constraints regarding energy dissipation and contact time duration. Upon examining the dynamical responses of the two impact cases, they exhibit nearly identical outcomes in the two-parameter bifurcation diagrams when subjected to a large restitution coefficient. However, discrepancies arise between the results of the two models when the restitution coefficient is low. Detailed numerical tests, conducted using the proposed method, demonstrate enhanced effectiveness compared to previous techniques, such as the prediction formulas for the different related soft impact model outlined by Okolewski and Blazejczyk-Okolewska [Chaos 31(8), 083110 (2021)]. This method not only finds application in experimentally identifying the physical properties of an impact surface but also provides convenience in employing soft models within impacting systems, which could then avoid potential inaccuracies in handling discontinuities by some integrator during velocity jumps before and after impacts.
RESUMEN
A simple one-pot green synthesis method was used to prepare urease-inorganic hybrid nanoflowers (UE-HNFs), which had a high surface-to-volume ratio to improve enzyme catalytic efficiency and make urease reusable. A portable colorimetric microliter tube based on urease-inorganic hybrid nanoflowers (UE-HNFs-PCMT), as an urea colorimetric biosensor, was developed for determining urea concentration in milk. The combination of urea colorimetric biosensor and a smartphone is used for capturing the colour change of milk after reaction. There was a good linear relationship between colour intensity of the image (Δ intensity) and urea concentration (43-600 mg L-1), with a detection limit of 12.81 mg L-1. UE-HNFs-PCMT has the advantages of no need for complex equipment, easy operation, reusability, low detection cost, good portability, and environmental friendliness and can achieve urea detection in milk.
Asunto(s)
Técnicas Biosensibles , Colorimetría , Límite de Detección , Leche , Nanoestructuras , Urea , Ureasa , Ureasa/química , Urea/análisis , Urea/química , Leche/química , Colorimetría/métodos , Animales , Técnicas Biosensibles/métodos , Nanoestructuras/química , Enzimas Inmovilizadas/química , Teléfono InteligenteRESUMEN
Tumor-associated antigen (TAA)-based diagnosis has gained prominence for early tumor screening, treatment monitoring, prognostic assessment, and minimal residual disease detection. However, limitations such as low sensitivity and difficulty in extracting non-specific binding membrane proteins still exist in traditional detection methods. Upconversion luminescence (UCL) exhibits unique physical and chemical properties under wavelength near-infrared light excitation. Rolling circle amplification (RCA) is an efficient DNA amplification technique with amplification factors as high as 105. Therefore, the above two excellent techniques can be employed for highly accurate imaging analysis of tumor cells. Herein, we developed a novel nanoplatform for TAA-specific cell imaging based on UCL and RCA technology. An aptamer-primer complex selectively binds to Mucin 1 (MUC1), one of TAA on cell surface, to trigger RCA reaction, generating a large number of repetitive sequences. These sequences provide lots of binding sites for complementary signal probes, producing UCL from lanthanide-doped upconversion nanoparticles (UCNPs) after releasing quencher group. The experimental results demonstrate the specific attachment of upconversion nanomaterials to cancer cells which express a high level of MUC1, indicating the potential of UCNPs and RCA in tumor imaging.
Asunto(s)
Luminiscencia , Ácidos Nucleicos , Diagnóstico por Imagen , Membrana Celular , Técnicas de Amplificación de Ácido NucleicoRESUMEN
Chondrocyte senescence is a decisive component of age-related osteoarthritis, however, the function of small noncoding RNAs (sncRNAs) in chondrocyte senescence remains underexplored. Human hip joint cartilage chondrocytes were cultivated up to passage 4 to induce senescence. RNA samples were extracted and then analyzed using small RNA sequencing and qPCR. ß-galactosidase staining was used to detect the effect of sncRNA on chondrocyte aging. Results of small RNA sequencing showed that 279 miRNAs, 136 snoRNAs, 30 snRNAs, 102 piRNAs, and 5 rasiRNAs were differentially expressed in senescent chondrocytes. The differential expression of 150 sncRNAs was further validated by qPCR. Transfection of sncRNAs and ß-galactosidase staining were also performed to further revealed that hsa-miR-135b-5p, SNORA80B-201, and RNU5E-1-201 have the function to restrain chondrocyte senescence, while has-piR-019102 has the function to promote chondrocyte senescence. Our data suggest that sncRNAs have therapeutic potential as novel epigenetic targets in age-related osteoarthritis.
Asunto(s)
MicroARNs , Osteoartritis , ARN Pequeño no Traducido , Humanos , Condrocitos/metabolismo , Osteoartritis/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Pequeño no Traducido/metabolismo , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo , Epigénesis Genética , Senescencia CelularRESUMEN
Cow milk consumption (CMC) and downstream alterations of serum metabolites are commonly considered important factors regulating human health status. Foods may lead to metabolic changes directly or indirectly through remodelling gut microbiota (GM). We sought to identify the metabolic alterations in Chinese Peri-/Postmenopausal women with habitual CMC and explore if the GM mediates the CMC-metabolite associations. 346 Chinese Peri-/Postmenopausal women participants were recruited in this study. Fixed effects regression and partial least squares discriminant analysis (PLS-DA) were applied to reveal alterations of serum metabolic features in different CMC groups. Spearman correlation coefficient was computed to detect metabolome-metagenome association. 36 CMC-associated metabolites including palmitic acid (FA(16:0)), 7alpha-hydroxy-4-cholesterin-3-one (7alphaC4), citrulline were identified by both fixed effects regression (FDR < 0.05) and PLS-DA (VIP score > 2). Some significant metabolite-GM associations were observed, including FA(16:0) with gut species Bacteroides ovatus, Bacteroides sp.D2. These findings would further prompt our understanding of the effect of cow milk on human health.
Asunto(s)
Microbioma Gastrointestinal , Leche , Posmenopausia , Humanos , Femenino , Animales , Persona de Mediana Edad , Posmenopausia/sangre , China , Bovinos , Citrulina/sangre , Anciano , Dieta , Metaboloma , Bacteroides , Pueblos del Este de AsiaRESUMEN
Plant microRNAs play critical roles in post-transcriptional gene regulation of many processes, thus motivating the development of accurate and user-friendly microRNA detection methods for better understanding of, e.g., plant growth, development, and abiotic/biotic stress responses. By integrating the capture probe, fuel strand, primer, and template onto the surface of a magnetic nanoparticle (MNP), we demonstrated a magnetic DNA nanomachine that could conduct an on-particle cascade amplification reaction in response to the presence of target microRNA. The cascade amplification consists of an exonuclease III-assisted target recycling step and a rolling circle amplification step, leading to changes in the MNP arrangement that can be quantified by ferromagnetic resonance spectroscopy. After a careful investigation of the exonuclease III side reaction, the biosensor offers a detection limit of 15 fM with a total assay time of ca. 70 min. Moreover, our magnetic DNA nanomachine is capable of discriminating the target microRNA from its family members. Our biosensor has also been tested on total endogenous microRNAs extracted from Arabidopsis thaliana leaves, with a performance comparable to qRT-PCR.
Asunto(s)
Técnicas Biosensibles , MicroARNs , MicroARNs/genética , MicroARNs/análisis , ADN/análisis , Magnetismo , Técnicas de Amplificación de Ácido Nucleico/métodos , Fenómenos Magnéticos , Técnicas Biosensibles/métodos , Límite de DetecciónRESUMEN
The growth of inch-scale high-quality graphene on insulating substrates is desirable for electronic and optoelectronic applications, but remains challenging due to the lack of metal catalysis. Here we demonstrate the wafer-scale synthesis of adlayer-free ultra-flat single-crystal monolayer graphene on sapphire substrates. We converted polycrystalline Cu foil placed on Al2O3(0001) into single-crystal Cu(111) film via annealing, and then achieved epitaxial growth of graphene at the interface between Cu(111) and Al2O3(0001) by multi-cycle plasma etching-assisted-chemical vapour deposition. Immersion in liquid nitrogen followed by rapid heating causes the Cu(111) film to bulge and peel off easily, while the graphene film remains on the sapphire substrate without degradation. Field-effect transistors fabricated on as-grown graphene exhibited good electronic transport properties with high carrier mobilities. This work breaks a bottleneck of synthesizing wafer-scale single-crystal monolayer graphene on insulating substrates and could contribute to next-generation graphene-based nanodevices.
RESUMEN
Epithelial ovarian cancer (EOC) is the most common of cancer death among malignant tumors in women, its occurrence and development are strongly linked to estrogen. Having identified the phosphatase and tensin homologue (PTEN) is a potent tumor suppressor regulating cell proliferation, migration, and survival. Meanwhile, there is a correlation between PTEN protein expression and estrogen receptor expression in EOC. However, no study has amplified on the molecular regulatory mechanism and function between estrogen and PTEN in the development of EOC. In this research, we found that PTEN shows a low expression level in EOC tissues and estrogen decreased PTEN expression via the estrogen receptor 1 (ESR1) in EOC cells. Knockdown of PTEN enhanced the proliferation and migration level of EOC cells driven by estrogen. Moreover, PTEN was also phosphorylated by G protein-coupled receptor 30 (GPR30)-Protein kinase C (PKC) signaling pathway upon estrogen stimulation. Inhibiting the phosphorylation of PTEN weakened the proliferation and migration of estrogen induced-EOC cells estrogen and decreased the phosphorylation of Protein kinase B (AKT) and Mammalian target of rapamycin (mTOR). These results indicated that estrogen decreased PTEN expression level via the ESR1 genomic pathway and phosphorylated PTEN via the GPR30-PKC non-genomic pathway to activate the PI3K/AKT/mTOR signaling pathway, thereby determining the fate of EOC cells.
Asunto(s)
Neoplasias Ováricas , Proteínas Proto-Oncogénicas c-akt , Humanos , Femenino , Proteínas Proto-Oncogénicas c-akt/metabolismo , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/metabolismo , Carcinoma Epitelial de Ovario/patología , Fosforilación , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular Tumoral , Neoplasias Ováricas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Estrógenos , Proliferación Celular/genéticaRESUMEN
BACKGROUND: In recent years, neoadjuvant immunotherapy with chemotherapy has shown increasing promise for locally advanced non-small cell lung cancer (NSCLC). However, to establish its clinical efficacy and safety, it is imperative to amass more real-world clinical data. This retrospective study aims to assess the safety and effectiveness of combing sintilimab, a PD-1 inhibitor, with chemotherapy as a neoadjuvant treatment modality in patients diagnosed with potentially resectable NSCLC. METHODS: We retrospectively reviewed patients with stage II-III NSCLC receiving neoadjuvant chemoimmunotherapy in Sichuan Cancer Hospital between February 2021 and February 2023. Sintilimab injection (intravenously,200 mg, iv, d1, q3w) and platinum-based chemotherapy were administered intravenously every 3 weeks, with radical lung cancer resection planned approximately 4-11 weeks after the last dose. The primary endpoint of the study was pathologic complete response (pCR). The secondary endpoints were objective response rate (ORR), and safety. RESULT: Thirteen patients were enrolled, they were mostly diagnosed with stage III NSCLC (IIB 15.4% IIIA 38.5%; IIIB 46.2%). Most of them had pathologically confirmed squamous cell carcinoma (69.2%). All patients received sintilimab combined with platinum-based chemotherapy for 2 to 4 cycles. Notably, none of the patients necessitated a reduction in initial dosages or treatment postponement due to intolerable adverse events. Then, all of them underwent surgical operation. Impressively, nine patients (69.2%) achieved a pathologic complete response. The objective response rate (ORR) stood at 46.15%. Nine patients experienced neoadjuvant treatment-related adverse events (TRAEs), with only one patient (7.6%) encountering a grade 4 neoadjuvant TRAE. CONCLUSION: Therefore, the current study suggested that neoadjuvant sintilimab plus platinum-based chemotherapy can be a safe approach in increasing the efficiency of treatment and hopefully improving the prognosis of patients with potentially resectable locally advanced NSCLC.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Terapia Neoadyuvante , Estudios Retrospectivos , Neoplasias Pulmonares/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéuticoRESUMEN
Skin mixed tumors are extremely rare clinically, lack characteristic manifestations, and are easily confused with other diseases. An Asian male came to our hospital's cosmetic and plastic surgery department because of a skin mass on the right side of his nose. After unanimous discussion by our doctors, the patient underwent subcutaneous tumor resection under local anesthesia and rotational flap transplantation to treat the disease and improve the shape of the nose. The surgery was a success. The patient was checked regularly, and the sutures were removed 1 week later. The patient's wound was normal after suture removal. During the 5-month follow-up, the patient's right nose showed no recurrence, the appearance was normal, and the scar was not obvious. The patient was satisfied.
Asunto(s)
Neoplasias Cutáneas , Piel , Masculino , Humanos , Cicatriz/cirugía , Neoplasias Cutáneas/cirugía , Colgajos Quirúrgicos/cirugía , Trasplante de Piel , Nariz/cirugía , Resultado del TratamientoRESUMEN
BACKGROUND: Tofu is rich in nutrients and contains high-quality protein. However, commercial tofu products usually have weak gel strength and low water holding capacity (WHC). In the present study, the effects of selective thermal denaturation (STD) time (0-20 min, 5-min interval; 85 °C) and glycosylation (100 °C; 0, 10 and 20 g kg-1 glucose) on the quality characteristics of green soybean tofu were studied through by the evaluation method of the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) model for the best synergism condition of STD and glycosylation. RESULTS: Compared to STD or glycosylation, combination treatment of STD and glycosylation improved hardness, WHC, yield, protein and fat contents of green soybean tofu. Furthermore, the gel strength, WHC, yield, protein and fat contents of tofu was increased by 135.21%, 20.18%, 12.21%, 24.91%, 44.15% compared to untreated tofu. Meanwhile, synergistic treatment of STD and glycosylation significantly improved microstructure network structure of green soybean tofu and made it more homogeneous and denser. However, the green soybean tofu was faded and turned yellow under the combination of the STD and glycosylation. CONCLUSION: The results obtained through TOPSIS showed that the combination of thermal treatment (85 °C for 15 min) and glycosylation (20 g kg-1 glucose at 100 °C) had the greatest improvement in the characteristics of green soybean tofu. Hence, the combination treatment of STD and glycosylation should be useful for improving the quality characteristics of green soybean tofu and providing the technical references for industrial processing of tofu. © 2022 Society of Chemical Industry.
Asunto(s)
Manipulación de Alimentos , Alimentos de Soja , Manipulación de Alimentos/métodos , Glycine max/química , Glicosilación , Alimentos de Soja/análisis , Proteínas de Soja/químicaRESUMEN
We performed a meta-analysis to evaluate the effect of powdered vancomycin on stopping surgical site wound infections in neurosurgery. A systematic literature search up to July 2022 was performed and 24 137 subjects with neurosurgery at the baseline of the studies; 10 496 of them were using the powdered vancomycin, and 13 641 were not using the powdered vancomycin as a control. Odds ratio (OR) with 95% confidence intervals (CIs) were calculated to assess the effect of powdered vancomycin on stopping surgical site wound infections in neurosurgery using dichotomous methods with a random or fixed-effect model. The powdered vancomycin had significantly lower surgical site wound infections after spinal surgery (OR, 0.53; 95% CI, 0.41-0.70, P < .001), deep surgical site wound infections after spinal surgery (OR, 0.45; 95% CI, 0.35-0.57, P < .001), superficial surgical site wound infections after spinal surgery (OR, 0.60; 95% CI, 0.43-0.83, P = .002), and surgical site wound infections after cranial surgery (OR, 0.37; 95% CI, 0.22-0.61, P < .001) compared to control in subjects with neurosurgery. The powdered vancomycin had significantly lower surgical site wound infections after spinal surgery, deep surgical site wound infections after spinal surgery, superficial surgical site wound infections after spinal surgery, and surgical site wound infections after cranial surgery compared to control in subjects with neurosurgery. The analysis of outcomes should be done with caution even though the low number of studies with low sample size, 3 out of the 42 studies, in the meta-analysis, and a low number of studies in certain comparisons.
Asunto(s)
Neurocirugia , Vancomicina , Humanos , Vancomicina/uso terapéutico , Polvos , Procedimientos Neuroquirúrgicos/efectos adversos , Infección de la Herida Quirúrgica/tratamiento farmacológico , Infección de la Herida Quirúrgica/prevención & control , Antibacterianos/uso terapéuticoRESUMEN
Production of hydroxy fatty acids (HFAs) in transgenic crops represents a promising strategy to meet our demands for specialized plant oils with industrial applications. The expression of Ricinus communis (castor) OLEATE 12-HYDROXYLASE (RcFAH12) in Arabidopsis has resulted in only limited accumulation of HFAs in seeds, which probably results from inefficient transfer of HFAs from their site of synthesis (phosphatidylcholine; PC) to triacylglycerol (TAG), especially at the sn-1/3 positions of TAG. Phospholipase As (PLAs) may be directly involved in the liberation of HFAs from PC, but the functions of their over-expression in HFA accumulation and distribution at TAG in transgenic plants have not been well studied. In this work, the functions of lecithin:cholesterol acyltransferase-like PLAs (LCAT-PLAs) in HFA biosynthesis were characterized. The LCAT-PLAs were shown to exhibit homology to LCAT and mammalian lysosomal PLA2 , and to contain a conserved and functional Ser/His/Asp catalytic triad. In vitro assays revealed that LCAT-PLAs from the HFA-accumulating plant species Physaria fendleri (PfLCAT-PLA) and castor (RcLCAT-PLA) could cleave acyl chains at both the sn-1 and sn-2 positions of PC, and displayed substrate selectivity towards sn-2-ricinoleoyl-PC over sn-2-oleoyl-PC. Furthermore, co-expression of RcFAH12 with PfLCAT-PLA or RcLCAT-PLA, but not Arabidopsis AtLCAT-PLA, resulted in increased occupation of HFA at the sn-1/3 positions of TAG as well as small but insignificant increases in HFA levels in Arabidopsis seeds compared with RcFAH12 expression alone. Therefore, PfLCAT-PLA and RcLCAT-PLA may contribute to HFA turnover on PC, and represent potential candidates for engineering the production of unusual fatty acids in crops.