Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(44): e2310174120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37883437

RESUMEN

α-synuclein (α-Syn) is a presynaptic protein that is involved in Parkinson's and other neurodegenerative diseases and binds to negatively charged phospholipids. Previously, we reported that α-Syn clusters synthetic proteoliposomes that mimic synaptic vesicles. This vesicle-clustering activity depends on a specific interaction of α-Syn with anionic phospholipids. Here, we report that α-Syn surprisingly also interacts with the neutral phospholipid lysophosphatidylcholine (lysoPC). Even in the absence of anionic lipids, lysoPC facilitates α-Syn-induced vesicle clustering but has no effect on Ca2+-triggered fusion in a single vesicle-vesicle fusion assay. The A30P mutant of α-Syn that causes familial Parkinson disease has a reduced affinity to lysoPC and does not induce vesicle clustering. Taken together, the α-Syn-lysoPC interaction may play a role in α-Syn function.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Vesículas Sinápticas/metabolismo , Lisofosfatidilcolinas/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Fosfolípidos/metabolismo
2.
Trends Analyt Chem ; 1692023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37928815

RESUMEN

Structured illumination microscopy (SIM) is a super-resolution technology for imaging living cells and has been used for studying the dynamics of lysosomes and mitochondria. Recently, new probes and analyzing methods have been developed for SIM imaging, enabling the quantitative analysis of these subcellular structures and their interactions. This review provides an overview of the working principle and advances of SIM, as well as the organelle-targeting principles and types of fluorescence probes, including small molecules, metal complexes, nanoparticles, and fluorescent proteins. Additionally, quantitative methods based on organelle morphology and distribution are outlined. Finally, the review provides an outlook on the current challenges and future directions for improving the combination of SIM imaging and image analysis to further advance the study of organelles. We hope that this review will be useful for researchers working in the field of organelle research and help to facilitate the development of SIM imaging and analysis techniques.

3.
Fish Physiol Biochem ; 49(6): 1229-1239, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37843716

RESUMEN

Lipoprotein lipase (LPL) functions as a marker of adipocyte differentiation in mammals, but little is known about its role in fish adipogenesis. The aim of this research is to investigate the function of Lpl in adipocyte differentiation in fish. In this paper, we isolated and characterized lipoprotein lipase a (lpla) and lipoprotein lipase b (lplb) from grass carp (Ctenopharyngodon idellus). The complete coding sequence of lpla and lplb was 1524 bp and 1503 bp in length, coding for 507 amino acids and 500 amino acids, respectively. Both lpla and lplb mRNA were expressed in a great number of tissues. During adipogenesis, the level of lpla mRNA reached its maximum at day 2 and then dropped gradually, while the level of lplb mRNA had no significant changes, indicating that lpla and lplb may have different function in the differentiation of grass carp adipocyte. Furthermore, inhibition of lpla by inhibitor of LPL(GSK264220A) at early time points most clearly reduced adipogenesis, whereas these effects were less pronounced at later stages, suggesting that lpla predominantly affects early adipogenesis rather than late adipogenesis. Based on these findings, it can be inferred that lpla and lplb in grass carp may have distinct roles in the differentiation of grass carp adipocyte, and lpla may play an important role in the early adipogenesis rather than late adipogenesis in grass carp.


Asunto(s)
Adipogénesis , Carpas , Animales , Lipoproteína Lipasa/genética , Carpas/genética , Carpas/metabolismo , ARN Mensajero/metabolismo , Aminoácidos , Proteínas de Peces/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
4.
Nat Chem Biol ; 19(12): 1434-1435, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37322155
5.
Angew Chem Int Ed Engl ; 59(43): 19229-19236, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-32662563

RESUMEN

It is of great significance to track the platinum drugs in real time with super-resolution to elucidate their mechanism of action, such as their behavior and distribution in live cells. Such information is required for further drug development. However, it is always challenging to design platinum complexes suitable for such research. Herein, we design a luminescent building block (L) for metal complexes and a dinuclear platinum complex (Pt2 L) for super-resolution imaging. Because of its super-large Stokes shift and excellent photophysical properties, Pt2 L is capable of serving as an ideal candidate for super-resolution imaging with extremely low luminescence background and high photobleaching resistance. Moreover, upon light stimulation, a matter flux of Pt2 L escaping from autolysosomes to nucleus was observed, which represents a new transportation path. Utilizing the photoactivated escape properties, we can regulate the nuclear accessibility of Pt2 L form autolysosomes with photo-selectivity, which provides a new way to improve the targeting of platinum drugs.


Asunto(s)
Color , Lisosomas/metabolismo , Compuestos de Platino/química , Células A549 , Transporte Biológico , Núcleo Celular/metabolismo , Células HeLa , Humanos , Microscopía Fluorescente/métodos , Mitocondrias/metabolismo , Compuestos de Platino/metabolismo
6.
Bioessays ; 39(5)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28332209

RESUMEN

We here review primary methods used in quantifying and mapping 5-hydroxymethylcytosine (5hmC), including global quantification, restriction enzyme-based detection, and methods involving DNA-enrichment strategies and the genome-wide sequencing of 5hmC. As discovered in the mammalian genome in 2009, 5hmC, oxidized from 5-methylcytosine (5mC) by ten-eleven translocation (TET) dioxygenases, is increasingly being recognized as a biomarker in biological processes from development to pathogenesis, as its various detection methods have shown. We focus in particular on an ultrasensitive single-molecule imaging technique that can detect and quantify 5hmC from trace samples and thus offer information regarding the distance-based relationship between 5hmC and 5mC when used in combination with fluorescence resonance energy transfer.


Asunto(s)
5-Metilcitosina/análogos & derivados , Epigénesis Genética , 5-Metilcitosina/análisis , 5-Metilcitosina/inmunología , 5-Metilcitosina/metabolismo , Animales , Especificidad de Anticuerpos , Secuencia de Bases , Cromatografía Líquida de Alta Presión , Mapeo Cromosómico , ADN/química , ADN/genética , Enzimas de Restricción del ADN , Transferencia Resonante de Energía de Fluorescencia , Marcadores Genéticos , Glicosilación , Humanos , Espectrometría de Masas , Análisis de Secuencia de ADN , Imagen Individual de Molécula/métodos
7.
Proteins ; 86(8): 882-891, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29726048

RESUMEN

Current cholesteryl ester transfer protein (CETP) inhibitors are designed based on the unglycosylated crystal structure, and most of them have failed to cure cardiovascular disease (CVD). It is particularly important for us to investigate the glycosylation structure of CETP (CETP-G) and effect of glycans on the structure and function of CETP. Here, we used a total of 3.0-µs molecular dynamics (MD) trajectories of nascent structure of CETP (CETP-N) and CETP-G to study their structural differentiations, to shed new light on the CETP-mediated lipid exchange. In accordance with our simulations and previous mutation studies, relative to CETP-N, CETP-G adopts a more stretched shape with higher hydrophobic and hydrophilic solvent-accessible surface area (SASA) of N-terminal oscillating with larger amplitude, in which Glycan88 provides partial assistance for CEs through the N-terminal. Glycan341 reduces the flexibility of neck flap, with the interference of CEs through the neck region. Besides, Glycan240 reduces the flexibility of Helix-X to interfere the CEs transfer. Glycan396 decreases the flexibility and increases the hydrophobic SASA of C-terminal. Overall, these glycans affect the dynamics and structure of CETP through forming H-bonds with surrounding residues, and the sampled conformations of glycan is also affected by its surrounding residues. Thus, glycans are an integral part of CETP, further studies on the CETP inhibition and treatment of CVD should fully consider the effect of glycans.


Asunto(s)
Proteínas de Transferencia de Ésteres de Colesterol/química , Glicoproteínas/química , Simulación de Dinámica Molecular , Polisacáridos/química , Sitios de Unión , Interacciones Hidrofóbicas e Hidrofílicas , Unión Proteica , Conformación Proteica , Solventes/química , Relación Estructura-Actividad
8.
Small ; 14(41): e1802166, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30350549

RESUMEN

Combining luminescent transition metal complex with super-resolution microscopy is an excellent strategy for the long-term visualization of the dynamics of subcellular structures in living cells. However, it remains unclear whether iridium(III) complexes are applicable for a particular type of super-resolution technique, structured illumination microscopy (SIM), to image subcellular structures. Herein, an iridium(III) dye, to track mitochondrial dynamics in living cells under SIM is described. The dye demonstrates excellent specificity and photostability and satisfactory cell permeability. While using SIM to image mitochondria, an ≈80 nm resolution is achieved that allows the clear observation of the structure of mitochondrial cristae. The dye is used to monitor and quantify mitochondrial dynamics relative to lysosomes, including fusion involved in mitophagy, and newly discovered mitochondria-lysosome contact (MLC) under different conditions. The MLC remains intact and fusion vanishes when five receptors, p62, NDP52, OPTN, NBR1, and TAX1BP1, are knocked out, suggesting that these two processes are independent.


Asunto(s)
Iridio/química , Lisosomas/química , Membranas Mitocondriales/química , Mitofagia/fisiología
10.
Phys Chem Chem Phys ; 19(18): 11603-11611, 2017 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-28429001

RESUMEN

Gaining insight into the relationships between the self-organized cell structures and the properties of biotissues is helpful for revealing the function of biomaterials and its designing principle. However, the traditionally used random foam model neglects several important details of the frameworks of cell clusters resulting in incomplete conclusions. Herein, we use a more complete model, the cell adhesion model, to investigate the mechanical and morphological properties of the two-dimensional (2D) dry cell foams. Since these 2D structures are formed by cell adhesion, the system can reach equilibrium through minimizing free energy. Under the equilibrium conditions without volume constraint, shape equations for highly symmetrical structures are derived, and the analytical results of the corresponding mechanical parameters, such as the Young's modulus, bulk modulus and failure strength, are obtained. Moreover, with volume constraint, numerical simulation method is applied to study the complex shapes and obtain several stable multicellular structures. Symmetry breaking caused by the volume change is also observed. Moreover, typical periodic shapes and the corresponding phase transformations are also explored. Our study provides a new potential method to bridge the microstructure and macro-mechanical parameters of biotissues. The results are also useful for understanding the formation mechanism of biotissue structures.


Asunto(s)
Adhesión Celular , Modelos Biológicos , Simulación por Computador , Módulo de Elasticidad , Células Vegetales/fisiología
11.
Elife ; 132024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38831693

RESUMEN

A change in the electric charge of autophagosome membranes controls the recruitment of SNARE proteins to ensure that membrane fusion occurs at the right time during autophagy.


Asunto(s)
Autofagosomas , Autofagia , Fusión de Membrana , Proteínas SNARE , Autofagia/fisiología , Autofagosomas/metabolismo , Proteínas SNARE/metabolismo , Humanos , Animales
12.
Nat Cell Biol ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951706

RESUMEN

α-Synuclein (α-Syn) aggregation is closely associated with Parkinson's disease neuropathology. Physiologically, α-Syn promotes synaptic vesicle (SV) clustering and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly. However, the underlying structural and molecular mechanisms are uncertain and it is not known whether this function affects the pathological aggregation of α-Syn. Here we show that the juxtamembrane region of vesicle-associated membrane protein 2 (VAMP2)-a component of the SNARE complex that resides on SVs-directly interacts with the carboxy-terminal region of α-Syn through charged residues to regulate α-Syn's function in clustering SVs and promoting SNARE complex assembly by inducing a multi-component condensed phase of SVs, α-Syn and other components. Moreover, VAMP2 binding protects α-Syn against forming aggregation-prone oligomers and fibrils in these condensates. Our results suggest a molecular mechanism that maintains α-Syn's function and prevents its pathological amyloid aggregation, the failure of which may lead to Parkinson's disease.

13.
J Mol Biol ; 435(13): 168089, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37030649

RESUMEN

SNARE is the essential mediator of membrane fusion that highly relies on the molecular structure of SNAREs. For instance, the protein syntaxin-1 involved in neuronal SNAREs, has a single transmembrane domain (sTMD) leading to fast fusion, while the syntaxin 17 has a V-shape double TMDs (dTMDs), taking part in the autophagosome maturation. However, it is not clear how the TMD structure influences the fusion process. Here, we demonstrate that the dTMDs significantly reduce fusion rate compared with the sTMD by using an in vitro reconstitution system. Through theoretical analysis, we reveal that the V-shape dTMDs can significantly increase protein-lipid mismatch, thereby raising the energy barrier of the fusion, and that increasing the number of SNAREs can reduce the energy barrier or protein-lipid mismatch. This study provides a physicochemical mechanistic understanding of SNARE-regulated membrane fusion.


Asunto(s)
Fusión de Membrana , Proteínas SNARE , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Dominios Proteicos , Mutación , Lípidos
14.
ACS Nano ; 17(5): 4716-4728, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36848459

RESUMEN

With the progression of nanotechnology, a growing number of nanomaterials have been created and incorporated into organisms and ecosystems, which raises significant concern about potential hazards of these materials on human health, wildlife, and the environment. Two-dimensional (2D) nanomaterials are one type of nanomaterials with thicknesses ranging from that of a single atom or of several atoms and have been proposed for a variety of biomedical applications such as drug delivery and gene therapy, but the toxicity thereof on subcellular organelles remains to be studied. In this work, we studied the impact of two typical 2D nanomaterials, MoS2 and BN nanosheets, on mitochondria, which are a type of membranous subcellular organelle that provides energy to cells. While 2D nanomaterials at a low dose exhibited a negligible cell mortality rate, significant mitochondrial fragmentation and partially reduced mitochondrial functions occurred; cells initiate mitophagy in response to mitochondrial damages, which cleans damaged mitochondria to avoid damage accumulation. Moreover, the molecular dynamics simulation results revealed that both MoS2 and BN nanosheets can spontaneously penetrate the mitochondrial lipid membrane through the hydrophobic interaction. The membrane penetration induced heterogeneous lipid packing resulting in damages. Our results demonstrate that even at a low dose 2D nanomaterials can physically damage mitochondria by penetrating the membrane, which draws attention to carefully evaluating the cytotoxicity of 2D nanomaterials for the potential biomedical application.


Asunto(s)
Molibdeno , Nanoestructuras , Humanos , Molibdeno/toxicidad , Molibdeno/química , Ecosistema , Mitofagia , Mitocondrias , Nanoestructuras/química , Lípidos
15.
Adv Drug Deliv Rev ; 199: 114978, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37385544

RESUMEN

Optical microscopes are an important imaging tool that have effectively advanced the development of modern biomedicine. In recent years, super-resolution microscopy (SRM) has become one of the most popular techniques in the life sciences, especially in the field of living cell imaging. SRM has been used to solve many problems in basic biological research and has great potential in clinical application. In particular, the use of SRM to study drug delivery and kinetics at the subcellular level enables researchers to better study drugs' mechanisms of action and to assess the efficacy of their targets in vivo. The purpose of this paper is to review the recent advances in SRM and to highlight some of its applications in assessing subcellular drug dynamics.

16.
Biomaterials ; 292: 121929, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36455487

RESUMEN

The endoplasmic reticulum's (ER) dynamic nature, essential for maintaining cellular homeostasis, can be influenced by stress-induced damage, which can be assessed by examining the morphology of ER dynamics and, more locally, ER properties such as hydrophobicity, viscosity, and polarity. Although numerous ER-specific chemical probes have been developed to monitor the ER's physical and chemical parameters, the quantitative detection and super-resolution imaging of its local hydrophobicity have yet to be explored. Here, we describe a photostable ER-targeted probe with high signal-to-noise ratio for super-resolution imaging that can specifically respond to changes in ER hydrophobicity under stress based on a "reserve-release" mechanism. The probe shows an excellent ability to target ER over commercial ER dyes and can be used to track local changes of hydrophobicity by fluorescence intensity and morphology during the selective autophagy of ER (i.e., reticulophagy). By correlating the level and location of ER damage with the distribution of fluorescence intensity, we were able to assess reticulophagy at the subcellular level. Beyond that, we developed a topological analytical tool adaptable to any ER probe for detecting structural changes in ER and thus quantitatively identifying reticulophagy. The algorithm-assisted tool can also be adapted to a wide range of molecular probes and organelles. Altogether, the new probe and analytical strategy described here show promise for the quantitative detection and analysis of subtle ER damage and stress.


Asunto(s)
Autofagia , Retículo Endoplásmico , Estrés del Retículo Endoplásmico
17.
Cell Rep ; 42(12): 113472, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-37999975

RESUMEN

Mitochondria are dynamic organelles that undergo fusion and fission events, in which the mitochondrial membrane and DNA (mtDNA) play critical roles. The spatiotemporal organization of mtDNA reflects and impacts mitochondrial dynamics. Herein, to study the detailed dynamics of mitochondrial membrane and mtDNA, we rationally develop a dual-color fluorescent probe, mtGLP, that could be used for simultaneously monitoring mitochondrial membrane and mtDNA dynamics via separate color outputs. By combining mtGLP with structured illumination microscopy to monitor mitochondrial dynamics, we discover the formation of nucleoid condensates in damaged mitochondria. We further reveal that nucleoid condensates promoted the peripheral fission of damaged mitochondria via asymmetric segregation. Through simulations, we find that the peripheral fission events occurred when the nucleoid condensates interacted with the highly curved membrane regions at the two ends of the mitochondria. Overall, we show that mitochondrial nucleoid condensates utilize peripheral fission to maintain mitochondrial homeostasis.


Asunto(s)
ADN Mitocondrial , Mitocondrias , Mitocondrias/genética , ADN Mitocondrial/genética , Membranas Mitocondriales , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales
18.
Adv Healthc Mater ; 11(8): e2102185, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35032365

RESUMEN

As a process of cellular uptake, endocytosis, with gradient acidity in different endocytic vesicles, is vital for the homeostasis of intracellular nutrients and other functions. To study the dynamics of endocytic pathway, a membrane-anchored pH probe, ECGreen, is synthesized to visualize endocytic vesicles under structured illumination microscopy (SIM), a super-resolution technology. Being sensitive to acidity with increasing fluorescence at low pH, ECGreen can differentiate early and late endosomes as well as endolysosomes. Meanwhile, membrane anchoring not only improves the durability of ECGreen, but also provides an excellent anti-photobleaching property for long-time imaging with SIM. Moreover, by taking these advantages of ECGreen, a multidimensional analysis model containing spatial, temporal, and pH information is successfully developed for elucidating the dynamics of endocytic vesicles and their interactions with mitochondria during autophagy, and reveals a fast conversion of endosomes near the plasma membrane.


Asunto(s)
Endocitosis , Endosomas , Membrana Celular/metabolismo , Endocitosis/fisiología , Endosomas/metabolismo , Endosomas/fisiología , Fluorescencia , Lisosomas/fisiología
19.
Nat Commun ; 13(1): 4303, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35879298

RESUMEN

Mitochondria are highly dynamic organelles whose fragmentation by fission is critical to their functional integrity and cellular homeostasis. Here, we develop a method via optogenetic control of mitochondria-lysosome contacts (MLCs) to induce mitochondrial fission with spatiotemporal accuracy. MLCs can be achieved by blue-light-induced association of mitochondria and lysosomes through various photoactivatable dimerizers. Real-time optogenetic induction of mitochondrial fission is tracked in living cells to measure the fission rate. The optogenetic method partially restores the mitochondrial functions of SLC25A46-/- cells, which display defects in mitochondrial fission and hyperfused mitochondria. The optogenetic MLCs system thus provides a platform for studying mitochondrial fission and treating mitochondrial diseases.


Asunto(s)
Enfermedades Mitocondriales , Dinámicas Mitocondriales , Humanos , Lisosomas/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Optogenética , Proteínas de Transporte de Fosfato/metabolismo
20.
Adv Sci (Weinh) ; 8(17): e2004566, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34197052

RESUMEN

Oncosis, depending on DNA damage and mitochondrial swelling, is an important approach for treating cancer and other diseases. However, little is known about the behavior of mitochondria during oncosis, due to the lack of probes for in situ visual illumination of the mitochondrial membrane and mtDNA. Herein, a mitochondrial lipid and mtDNA dual-labeled probe, MitoMN, and a continuous add-on assay, are designed to image the dynamic process of mitochondria in conditions that are unobservable with current mitochondrial probes. Meanwhile, the MitoMN can induce oncosis in a light-activated manner, which results in the enlargement of mitochondria and the death of cancer cells. Using structured illumination microscopy (SIM), MitoMN-stained mitochondria with a dual-color response reveals, for the first time, how swelled mitochondria interacts and fuses with each other for a nonlinear enlargement to accelerate oncosis into an irreversible stage. With this sign of irreversible oncosis revealed by MitoMN, oncosis can be segregated into three stages, including before oncosis, initial oncosis, and accelerated oncosis.


Asunto(s)
Muerte Celular/fisiología , ADN Mitocondrial/metabolismo , Diseño de Equipo/métodos , Microscopía/instrumentación , Microscopía/métodos , Mitocondrias/metabolismo , Células Cultivadas , Luz , Membranas Mitocondriales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA