Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Monit Assess ; 195(9): 1043, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37589894

RESUMEN

Uranium, naturally occurring radionuclide is chemotoxic and nephrotoxic beyond acceptable limit. The presence of uranium beyond acceptable limit in surface and ground water, adversely affecting people's health. In the present investigation, the uranium concentration in surface and ground water of Chittorgarh, Rajasthan was studied along with the physico-chemical parameters of water (n = 87). The ground water was further sub-categorised into well water, handpump water, and borewell water. The mean uranium concentration was observed at 2.5 ± 1.9 µgL-1 and 16.5 ± 1.4 µgL-1 in the surface and ground water samples, respectively. In sub-categories of ground water, the highest uranium concentration was found in borewell water (23.3 ± 17.0 µgL-1), followed by handpump water (13.5 ± 9.1 µgL-1) and well water (6.0 ± 5.5 µgL-1). The uranium concentration was correlated significantly with the depth of the ground water table. It also correlated significantly with electrical conductivity, total dissolved solids and nitrate concentration. 100% of surface water and 88.9% of ground water samples carried uranium concentration within the acceptable limit of WHO (30 µgL-1). The annual ingestion dose was found at 3.8 µSvy-1 (for males) and 2.8 µSvy-1 (for females) in surface water and 25.4 µSvy-1 (for males) and 18.5 µSvy-1 (for females) in ground water. In the sub-categories of the ground water sample, the annual ingestion dose followed the trend in males 35.8 µSvy-1 (borewell water) > 20.7 µSvy-1 (hand pump water) > 9.2 µSvy-1 (well water) and in females 26.1 µSvy-1 (borewell water) > 15.1 µSvy-1 (hand pump water) > 6.7 µSvy-1 (well water).


Asunto(s)
Agua Subterránea , Uranio , Humanos , Femenino , Masculino , India , Monitoreo del Ambiente , Agua , Ingestión de Alimentos
2.
Genome ; 61(5): 311-322, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29447453

RESUMEN

Plant glutathione S-transferases (GSTs) are integral to normal plant metabolism and biotic and abiotic stress tolerance. The GST gene family has been characterized in diverse plant species using molecular biology and bioinformatics approaches. In the current study, in silico analysis identified 44 GSTs in Vigna radiata. Of the total 44 GSTs identified, chromosomal locations of 31 GSTs were confirmed. The pI value of GST proteins ranged from 5.10 to 9.40. The predicted molecular weights ranged from 13.12 to 50 kDa. Subcellular localization analysis revealed that all GSTs were predominantly localized in the cytoplasm. The active site amino acids were confirmed to be serine in tau, phi, theta, zeta, and TCHQD; cysteine in lambda, DHAR, and omega; and tyrosine in EF1G. The gene architecture conformed to the two-exon/one-intron and three-exon/two-intron organization in the case of tau and phi classes, respectively. MEME analysis identified 10 significantly conserved motifs with the width of 8-50 amino acids. The motifs identified were either specific to a specific GST class or were shared by multiple GST classes. The results of the current study will be of potential importance in the characterization of the GST gene family in V. radiata, an economically important leguminous crop.


Asunto(s)
Cromosomas de las Plantas/química , Regulación de la Expresión Génica de las Plantas , Glutatión Transferasa/genética , Proteínas de Plantas/genética , Vigna/genética , Secuencia de Aminoácidos , Dominio Catalítico , Mapeo Cromosómico , Cromosomas de las Plantas/ultraestructura , Biología Computacional/métodos , Exones , Ontología de Genes , Glutatión Transferasa/metabolismo , Intrones , Isoenzimas/genética , Isoenzimas/metabolismo , Anotación de Secuencia Molecular , Peso Molecular , Filogenia , Proteínas de Plantas/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Vigna/clasificación , Vigna/enzimología
3.
Plants (Basel) ; 12(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37571005

RESUMEN

Bread wheat (Triticum aestivum L.) is widely grown in sub-tropical and tropical areas and, as such, it is exposed to heatstress especially during the grain filling period (GFP). Global warming has further affected its production and productivity in these heat-stressed environments. We examined the effects of heatstress on 18 morpho-physiological and yield-related traits in 96 bread wheat accessions. Heat stress decreased crop growth and GFP, and consequently reduced morphological and yield-related traits in the delayed sown crop. A low heat susceptibility index and high yield stability were used for selecting tolerant accessions. Under heatstress, the days to 50% anthesis, flag-leaf area, chlorophyll content, normalized difference vegetation index (NDVI), thousand grain weight (TGW), harvest index and grain yield were significantly reduced both in tolerant and susceptible accessions. The reduction was severe in susceptible accessions (48.2% grain yield reduction in IC277741). The plant height, peduncle length and spike length showeda significant reduction in susceptible accessions, but a non-significant reduction in the tolerant accessions under the heatstress. The physiological traits like the canopy temperature depression (CTD), plant waxiness and leaf rolling were increased in tolerant accessions under heatstress. Scanning electron microscopy of matured wheat grains revealed ultrastructural changes in endosperm and aleurone cells due to heat stress. The reduction in size and density of large starch granules is the major cause of the yield and TGW decrease in the heat-stress-susceptible accessions. The most stable and high-yielding accessions, namely, IC566223, IC128454, IC335792, EC576707, IC535176, IC529207, IC446713 and IC416019 were identified as the climate-smart germplasm lines. We selected germplasm lines possessing desirable traits as potential parents for the development of bi-parent and multi-parent mapping populations.

4.
J Appl Genet ; 64(4): 645-666, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37743422

RESUMEN

Crop wild relatives (CWRs) are vital sources of variation for genetic improvement, but their populations are few in genebanks, eroded in natural habitats and inadequately characterized. With a view to explore genetic diversity in CWRs of AA genome rice (Oryza sativa L.) species in India, we analyzed 96 accessions of 10 Oryza species by using 17 quantitative traits and 45 microsatellite markers. The morpho-quantitative traits revealed a high extent of phenotypic variation in the germplasm. Diversity index (H') revealed a high level of within-species variability in O. nivara (H' = 1.09) and O. rufipogon (H' = 1.12). Principal component (PC) analysis explained 79.22% variance with five PCs. Among the traits related to phenology, morphology, and yield, days to heading showed strong positive association with days to 50% flowering (r = 0.99). However, filled grains per panicle revealed positive association with spikelet fertility (0.71) but negative with awn length (- 0.58) and panicle bearing tillers (- 0.39). Cluster analysis grouped all the accessions into three major clusters. Microsatellite analysis revealed 676 alleles with 15.02 alleles per locus. High polymorphism information content (PIC = 0.83) and Shannon's information index (I = 2.31) indicated a high level of genetic variation in the CWRs. Structure analysis revealed four subpopulations; first and second subpopulations comprised only of O. nivara accessions, while the third subpopulation included both O. nivara and O. rufipogon accessions. Population statistics revealed a moderate level of genetic differentiation (FST = 0.14), high gene diversity (HE = 0.87), and high gene flow (Nm = 1.53) among the subpopulations. We found a high level of molecular variance among the genotypes (70%) and low among populations (11%) and within genotypes (19%). The high level of molecular and morphological variability detected in the germplasm of CWRs could be utilized for the improvement of cultivated rice.


Asunto(s)
Variación Genética , Oryza , Oryza/genética , Alelos , Polimorfismo Genético , Fenotipo
5.
Front Plant Sci ; 14: 1148658, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457353

RESUMEN

Wheat (Triticum aestivum L.) is a staple food crop for the global human population, and thus wheat breeders are consistently working to enhance its yield worldwide. In this study, we utilized a sub-set of Indian wheat mini core germplasm to underpin the genetic architecture for seed shape-associated traits. The wheat mini core subset (125 accessions) was genotyped using 35K SNP array and evaluated for grain shape traits such as grain length (GL), grain width (GW), grain length, width ratio (GLWR), and thousand grain weight (TGW) across the seven different environments (E1, E2, E3, E4, E5, E5, E6, and E7). Marker-trait associations were determined using a multi-locus random-SNP-effect Mixed Linear Model (mrMLM) program. A total of 160 non-redundant quantitative trait nucleotides (QTNs) were identified for four grain shape traits using two or more GWAS models. Among these 160 QTNs, 27, 36, 38, and 35 QTNs were associated for GL, GW, GLWR, and TGW respectively while 24 QTNs were associated with more than one trait. Of these 160 QTNs, 73 were detected in two or more environments and were considered reliable QTLs for the respective traits. A total of 135 associated QTNs were annotated and located within the genes, including ABC transporter, Cytochrome450, Thioredoxin_M-type, and hypothetical proteins. Furthermore, the expression pattern of annotated QTNs demonstrated that only 122 were differentially expressed, suggesting these could potentially be related to seed development. The genomic regions/candidate genes for grain size traits identified in the present study represent valuable genomic resources that can potentially be utilized in the markers-assisted breeding programs to develop high-yielding varieties.

6.
Front Plant Sci ; 8: 360, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28367155

RESUMEN

Despite the importance of okra, as one of the important vegetable crop, very little attention has been paid to its genetic improvement using advanced biotechnological tools. The exploitation of marker assisted breeding in okra is often limited due to the availability of a few molecular markers, the absence of molecular genetic-map(s), and other molecular tools. Chromosome linkage-groups were not yet constructed for this crop and reports on marker development are very scanty and mostly hovering around cultivar characterization. Besides, very little progress has been observed for transgenic development. However, high throughput biotechnological tools like chromosome engineering, RNA interference (RNAi), marker-assisted recurrent selection (MARS), genome-wide selection (GWS), targeted gene replacement, next generation sequencing (NGS), and nanobiotechnology can provide a rapid way for okra improvement. Further, the etiology of many deadly viral diseases like the yellow vein mosaic virus (YVMV) and okra enation leaf curl virus (OELCV) in okra is broadly indistinct and has been shown to be caused by various begomovirus species. These diseases cause systemic infections and have a very effective mode of transmission; thus, preventing their spread has been very complicated. Biotechnological interventions have the potential to enhance okra production even under different viral-stress conditions. In this background, this review deals with the biotechnological advancements in okra per se along with the begomoviruses infecting okra, and special emphasis has been laid on the exploitation of advanced genomic tools for the development of resistant varieties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA