RESUMEN
OBJECTIVE: Cancer stem cells are responsible for tumour spreading and relapse. Human epidermal growth factor receptor 2 (HER2) expression is a negative prognostic factor in colorectal cancer (CRC) and a potential target in tumours carrying the gene amplification. Our aim was to define the expression of HER2 in colorectal cancer stem cells (CR-CSCs) and its possible role as therapeutic target in CRC resistant to anti- epidermal growth factor receptor (EGFR) therapy. DESIGN: A collection of primary sphere cell cultures obtained from 60 CRC specimens was used to generate CR-CSC mouse avatars to preclinically validate therapeutic options. We also made use of the ChIP-seq analysis for transcriptional evaluation of HER2 activation and global RNA-seq to identify the mechanisms underlying therapy resistance. RESULTS: Here we show that in CD44v6-positive CR-CSCs, high HER2 expression levels are associated with an activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, which promotes the acetylation at the regulatory elements of the Erbb2 gene. HER2 targeting in combination with phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase kinase (MEK) inhibitors induces CR-CSC death and regression of tumour xenografts, including those carrying Kras and Pik3ca mutation. Requirement for the triple targeting is due to the presence of cancer-associated fibroblasts, which release cytokines able to confer CR-CSC resistance to PI3K/AKT inhibitors. In contrast, targeting of PI3K/AKT as monotherapy is sufficient to kill liver-disseminating CR-CSCs in a model of adjuvant therapy. CONCLUSIONS: While PI3K targeting kills liver-colonising CR-CSCs, the concomitant inhibition of PI3K, HER2 and MEK is required to induce regression of tumours resistant to anti-EGFR therapies. These data may provide a rationale for designing clinical trials in the adjuvant and metastatic setting.
Asunto(s)
Neoplasias Colorrectales/patología , Fosfatidilinositol 3-Quinasa/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Receptor ErbB-2/metabolismo , Animales , Antineoplásicos Inmunológicos/farmacología , Cetuximab/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Trastuzumab/farmacología , Células Tumorales CultivadasRESUMEN
Patient-derived xenograft (PDX) models have become an important asset in translational cancer research. However, to provide a robust preclinical platform, PDXs need to accommodate the tumor heterogeneity that is observed in patients. Colorectal cancer (CRC) can be stratified into four consensus molecular subtypes (CMS) with distinct biological and clinical features. Surprisingly, using a set of CRC patients, we revealed the partial representation of tumor heterogeneity in PDX models. The epithelial subtypes, the largest subgroups of CRC subtype, were very ineffective in establishing PDXs, indicating the need for further optimization to develop an effective personalized therapeutic approach to CRC. Moreover, we showed that tumor cell proliferation was associated with successful PDX establishment and able to distinguish patient with poor clinical outcomes within CMS2 group.
Asunto(s)
Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Xenoinjertos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Humanos , RatonesRESUMEN
BACKGROUND: It has been proposed that mesenchymal stromal cells (MSCs) promote tumor progression by interacting with tumor cells and other stroma cells in the complex network of the tumor microenvironment. We characterized MSCs isolated and expanded from tumor tissues of pediatric patients diagnosed with neuroblastomas (NB-MSCs) to define interactions with the tumor microenvironment. METHODS: Specimens were obtained from 7 pediatric patients diagnosed with neuroblastoma (NB). Morphology, immunophenotype, differentiation capacity, proliferative growth, expression of stemness and neural differentiation markers were evaluated. Moreover, the ability of cells to modulate the immune response, i.e. inhibition of phytohemagglutinin (PHA) activated peripheral blood mononuclear cells (PBMCs) and natural killer (NK) cytotoxic function, was examined. Gene expression profiles, known to be related to tumor cell stemness, Wnt pathway activation, epithelial-mesenchymal transition (EMT) and tumor metastasis were also evaluated. Healthy donor bone marrow-derived MSCs (BM-MSC) were employed as controls. RESULTS: NB-MSCs presented the typical MSC morphology and phenotype. They showed a proliferative capacity superimposable to BM-MSCs. Stemness marker expression (Sox2, Nanog, Oct3/4) was comparable to BM-MSCs. NB-MSC in vitro osteogenic and chondrogenic differentiation was similar to BM-MSCs, but NB-MSCs lacked adipogenic differentiation capacity. NB-MSCs reached senescence phases at a median passage of P7 (range, P5-P13). NB-MSCs exhibited greater immunosuppressive capacity on activated T lymphocytes at a 1:2 (MSC: PBMC) ratio compared with BM-MSCs (p = 0.018). NK cytotoxic activity was not influenced by co-culture, either with BM-MSCs or NB-MSCs. Flow-cytometry cell cycle analysis showed that NB-MSCs had an increased number of cells in the G0-G1 phase compared to BM-MSCs. Transcriptomic profiling results indicated that NB-MSCs were enriched with EMT genes compared to BM-MSCs. CONCLUSIONS: We characterized the biological features, the immunomodulatory capacity and the gene expression profile of NB-MSCs. The NB-MSC gene expression profile and their functional properties suggest a potential role in promoting tumor escape, invasiveness and metastatic traits of NB cancer cells. A better understanding of the complex mechanisms underlying the interactions between NB cells and NB-derived MSCs should shed new light on potential novel therapeutic approaches.
Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Células Madre Mesenquimatosas/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patología , Microambiente Tumoral , Biomarcadores de Tumor , Células de la Médula Ósea/metabolismo , Fibroblastos Asociados al Cáncer/patología , Ciclo Celular , Diferenciación Celular/genética , Separación Celular/métodos , Células Cultivadas , Preescolar , Técnicas de Cocultivo , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Inmunofenotipificación/métodos , Lactante , Masculino , Mutación , Neuroblastoma/epidemiología , Neuroblastoma/terapia , Vigilancia de la Población , Sistema de Registros , Transducción de Señal , Microambiente Tumoral/genéticaRESUMEN
The cancer stem cell (CSC) model is describing tumors as a hierarchical organized system and CSCs are suggested to be responsible for cancer recurrence after therapy. The identification of specific markers of CSCs is therefore of paramount importance. Here, we show that high levels of lipid droplets (LDs) are a distinctive mark of CSCs in colorectal (CR) cancer. This increased lipid content was clearly revealed by label-free Raman spectroscopy and it directly correlates with well-accepted CR-CSC markers as CD133 and Wnt pathway activity. By xenotransplantation experiments, we have finally demonstrated that CR-CSCs overexpressing LDs retain most tumorigenic potential. A relevant conceptual advance in this work is the demonstration that a cellular organelle, the LD, is a signature of CSCs, in addition to molecular markers. A further functional characterization of LDs could lead soon to design new target therapies against CR-CSCs.
Asunto(s)
Neoplasias Colorrectales/patología , Células Madre Neoplásicas/patología , Espectrometría Raman/métodos , Animales , Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/metabolismo , Humanos , Gotas Lipídicas , Ratones , Células Madre Neoplásicas/metabolismo , Vía de Señalización WntRESUMEN
Cancer-initiating cells (CICs) that are responsible for tumor initiation, propagation, and resistance to standard therapies have been isolated from human solid tumors, including colorectal cancer (CRC). The aim of this study was to obtain an immunological profile of CRC-derived CICs and to identify CIC-associated target molecules for T cell immunotherapy. We have isolated cells with CIC properties along with their putative non-CIC autologous counterparts from human primary CRC tissues. These CICs have been shown to display "tumor-initiating/stemness" properties, including the expression of CIC-associated markers (e.g., CD44, CD24, ALDH-1, EpCAM, Lgr5), multipotency, and tumorigenicity following injection in immunodeficient mice. The immune profile of these cells was assessed by phenotype analysis and by in vitro stimulation of PBMCs with CICs as a source of Ags. CICs, compared with non-CIC counterparts, showed weak immunogenicity. This feature correlated with the expression of high levels of immunomodulatory molecules, such as IL-4, and with CIC-mediated inhibitory activity for anti-tumor T cell responses. CIC-associated IL-4 was found to be responsible for this negative function, which requires cell-to-cell contact with T lymphocytes and which is impaired by blocking IL-4 signaling. In addition, the CRC-associated Ag COA-1 was found to be expressed by CICs and to represent, in an autologous setting, a target molecule for anti-tumor T cells. Our study provides relevant information that may contribute to designing new immunotherapy protocols to target CICs in CRC patients.
Asunto(s)
Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/metabolismo , Vigilancia Inmunológica/inmunología , Interleucina-4/metabolismo , Células Madre Neoplásicas/inmunología , Células Madre Neoplásicas/metabolismo , Linfocitos T/inmunología , Escape del Tumor/inmunología , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/metabolismo , Comunicación Celular/inmunología , Línea Celular Tumoral , Membrana Celular/metabolismo , Humanos , Interleucina-4/antagonistas & inhibidores , Activación de Linfocitos/inmunología , Esferoides Celulares , Células Tumorales CultivadasRESUMEN
Glioblastoma is a highly angiogenetic malignancy, the neoformed vessels of which are thought to arise by sprouting of pre-existing brain capillaries. The recent demonstration that a population of glioblastoma stem-like cells (GSCs) maintains glioblastomas indicates that the progeny of these cells may not be confined to the neural lineage. Normal neural stem cells are able to differentiate into functional endothelial cells. The connection between neural stem cells and the endothelial compartment seems to be critical in glioblastoma, where cancer stem cells closely interact with the vascular niche and promote angiogenesis through the release of vascular endothelial growth factor (VEGF) and stromal-derived factor 1 (refs 5-9). Here we show that a variable number (range 20-90%, mean 60.7%) of endothelial cells in glioblastoma carry the same genomic alteration as tumour cells, indicating that a significant portion of the vascular endothelium has a neoplastic origin. The vascular endothelium contained a subset of tumorigenic cells that produced highly vascularized anaplastic tumours with areas of vasculogenic mimicry in immunocompromised mice. In vitro culture of GSCs in endothelial conditions generated progeny with phenotypic and functional features of endothelial cells. Likewise, orthotopic or subcutaneous injection of GSCs in immunocompromised mice produced tumour xenografts, the vessels of which were primarily composed of human endothelial cells. Selective targeting of endothelial cells generated by GSCs in mouse xenografts resulted in tumour reduction and degeneration, indicating the functional relevance of the GSC-derived endothelial vessels. These findings describe a new mechanism for tumour vasculogenesis and may explain the presence of cancer-derived endothelial-like cells in several malignancies.
Asunto(s)
Diferenciación Celular , Células Endoteliales/patología , Endotelio Vascular/patología , Glioblastoma/irrigación sanguínea , Glioblastoma/patología , Neovascularización Patológica/patología , Células-Madre Neurales/patología , Animales , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Linaje de la Célula , Aberraciones Cromosómicas , Células Endoteliales/metabolismo , Glioblastoma/genética , Humanos , Hibridación Fluorescente in Situ , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Modelos Biológicos , Trasplante de Neoplasias/patología , Neovascularización Patológica/genética , Células-Madre Neurales/metabolismo , Trasplante Heterólogo/patologíaRESUMEN
Tumor cell populations have been recently proposed to be composed of two compartments: tumor-initiating cells characterized by a slow and asymmetrical growth, and the "differentiated" cancer cells with a fast and symmetrical growth. Cancer stem cells or cancer-initiating cells (CICs) play a crucial role in tumor recurrence. The resistance of CICs to drugs and irradiation often allows them to survive traditional therapy. NK cells are potent cytotoxic lymphocytes that can recognize tumor cells. In this study, we have analyzed the NK cell recognition of tumor target cells derived from the two cancer cell compartments of colon adenocarcinoma lesions. Our data demonstrate that freshly purified allogeneic NK cells can recognize and kill colorectal carcinoma-derived CICs whereas the non-CIC counterpart of the tumors (differentiated tumor cells), either autologous or allogeneic, is less susceptible to NK cells. This difference in the NK cell susceptibility correlates with higher expression on CICs of ligands for NKp30 and NKp44 in the natural cytotoxicity receptor (NCR) group of activating NK receptors. In contrast, CICs express lower levels of MHC class I, known to inhibit NK recognition, on their surface than do the "differentiated" tumor cells. These data have been validated by confocal microscopy where NCR ligands and MHC class I molecule membrane distribution have been analyzed. Moreover, NK cell receptor blockade in cytotoxicity assays demonstrates that NCRs play a major role in the recognition of CIC targets. This study strengthens the idea that biology-based therapy harnessing NK cells could be an attractive opportunity in solid tumors.
Asunto(s)
Adenocarcinoma/inmunología , Neoplasias del Colon/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Células Asesinas Naturales/inmunología , Receptor 2 Gatillante de la Citotoxidad Natural/inmunología , Receptor 3 Gatillante de la Citotoxidad Natural/inmunología , Células Madre Neoplásicas/inmunología , Adenocarcinoma/genética , Adenocarcinoma/patología , Animales , Linaje de la Célula/inmunología , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Citotoxicidad Inmunológica , Expresión Génica , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Células Asesinas Naturales/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Microscopía Confocal , Receptor 2 Gatillante de la Citotoxidad Natural/genética , Receptor 3 Gatillante de la Citotoxidad Natural/genética , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/trasplante , Especificidad de Órganos , Células Tumorales CultivadasRESUMEN
The mutual and interdependent interaction between tumor and its microenvironment is a crucial topic in cancer research. Recently, it was reported that targeting stromal events could improve efficacies of current therapeutics and prevent metastatic spreading. Tumor microenvironment is a "complex network" of different cell types, soluble factors, signaling molecules and extracellular matrix components, which orchestrate the fate of tumor progression. As by definition, cancer stem cells (CSCs) are proposed to be the unique cell type able to maintain tumor mass and survive outside the primary tumor at metastatic sites. Being exposed to environmental stressors, including reactive oxygen species (ROS), CSCs have developed a GSH-dependent antioxidant system to improve ROS defense capability and acquire a malignant phenotype. Nevertheless, tumor progression is dependent on extracellular matrix remodeling, fibroblasts and macrophages activation in response to oxidative stress, as well as epithelial mesenchymal transition (EMT)-inducing signals and endothelial and perivascular cells recruitment. Besides providing a survival advantage by inducing de novo angiogenesis, tumor-associated vessels contribute to successful dissemination by facilitating tumor cells entry into the circulatory system and driving the formation of pre-metastatic niche. In this review, we focus on the synergistic effect of hypoxia inducible factors (HIFs) and vascular endothelial growth factors (VEGFs) in the successful outgrowth of metastasis, integrating therefore many of the emerging models and theories in the field.
Asunto(s)
Neoplasias/metabolismo , Neoplasias/patología , Microambiente Tumoral , Animales , Movimiento Celular , Supervivencia Celular , Transición Epitelial-Mesenquimal , Humanos , Hipoxia/metabolismo , Metástasis de la Neoplasia , Neoplasias/terapia , Células Madre Neoplásicas/metabolismo , Neovascularización Patológica/metabolismo , Oxidación-Reducción , Transducción de Señal , Nicho de Células MadreRESUMEN
p63 is an important regulator of epithelial development expressed in different variants containing (TA) or lacking (ΔN) the N-terminal transactivation domain. The different isoforms regulate stem-cell renewal and differentiation as well as cell senescence. Several studies indicate that p63 isoforms also play a role in cancer development; however, very little is known about the role played by p63 in regulating the cancer stem phenotype. Here we investigate the cellular signals regulated by TAp63 and ΔNp63 in a model of epithelial cancer stem cells. To this end, we used colon cancer stem cells, overexpressing either TAp63 or ΔNp63 isoforms, to carry out a proteomic study by chemical-labeling approach coupled to network analysis. Our results indicate that p63 is implicated in a wide range of biological processes, including metabolism. This was further investigated by a targeted strategy at both protein and metabolite levels. The overall data show that TAp63 overexpressing cells are more glycolytic-active than ΔNp63 cells, indicating that the two isoforms may regulate the key steps of glycolysis in an opposite manner. The mass-spectrometry proteomics data of the study have been deposited to the ProteomeXchange Consortium ( http://proteomecentral.proteomexchange.org ) via the PRIDE partner repository with data set identifiers PXD000769 and PXD000768.
Asunto(s)
Células Madre Neoplásicas/metabolismo , Mapas de Interacción de Proteínas/fisiología , Isoformas de Proteínas/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Humanos , Marcaje Isotópico , Metabolómica , Células Madre Neoplásicas/fisiología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Isoformas de Proteínas/química , Proteoma/análisis , Proteoma/metabolismo , Proteómica , Factores de Transcripción/química , Proteínas Supresoras de Tumor/químicaRESUMEN
Thyroid carcinoma represents the first malignancy among the endocrine organs. Investigating the cellular hierarchy and the mechanisms underlying the initiation of thyroid carcinoma is crucial in thyroid cancer research. Here, we present a protocol for deriving thyroid cell lineage from human embryonic stem cells. We also describe steps for engineering thyroid progenitor cells utilizing CRISPR-Cas9 technology, which can be used to perform in vivo studies, thus facilitating the development of representative thyroid tumorigenesis models. For complete details on the use and execution of this protocol, please refer to Veschi et al.1.
Asunto(s)
Sistemas CRISPR-Cas , Linaje de la Célula , Edición Génica , Glándula Tiroides , Neoplasias de la Tiroides , Humanos , Sistemas CRISPR-Cas/genética , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Edición Génica/métodos , Glándula Tiroides/patología , Glándula Tiroides/citología , Glándula Tiroides/metabolismo , Linaje de la Célula/genética , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/citología , Progresión de la EnfermedadRESUMEN
Despite increasing knowledge about small extracellular vesicle (sEV) composition and functions in cell-cell communication, the mechanism behind their biogenesis remains unclear. Here, we reveal for the first time that sEV biogenesis and release into the microenvironment are tightly connected with another important organelle, Lipid Droplets (LDs). The correlation was observed in several human cancer cell lines as well as patient-derived colorectal cancer stem cells (CR-CSCs). Our results demonstrated that external stimuli such as radiation, pH, hypoxia or lipid-interfering drugs, known to affect the number of LDs/cell, similarly influenced sEV secretion. Importantly, through multiple omics data, at both mRNA and protein levels, we revealed RAB5C as a potential important molecular player behind this organelle connection. Altogether, the potential to fine-tune sEV biogenesis by targeting LDs could significantly impact the amount, cargos and properties of these sEVs, opening new clinical perspectives.
RESUMEN
Metastasis arises from disseminated tumour cells (DTCs) that are characterized by intrinsic phenotypic plasticity and the capability of seeding to secondary organs. DTCs can remain latent for years before giving rise to symptomatic overt metastasis. In this context, DTCs fluctuate between a quiescent and proliferative state in response to systemic and microenvironmental signals including immune-mediated surveillance. Despite its relevance, how intrinsic mechanisms sustain DTCs plasticity has not been addressed. By interrogating the epigenetic state of metastatic cells, we find that tumour progression is coupled with the activation of oncogenic enhancers that are organized in variable interconnected chromatin domains. This spatial chromatin context leads to the activation of a robust transcriptional response upon repeated exposure to retinoic acid (RA). We show that this adaptive mechanism sustains the quiescence of DTCs through the activation of the master regulator SOX9. Finally, we determine that RA-stimulated transcriptional memory increases the fitness of metastatic cells by supporting the escape of quiescent DTCs from NK-mediated immune surveillance. Overall, these findings highlight the contribution of oncogenic enhancers in establishing transcriptional memories as an adaptive mechanism to reinforce cancer dormancy and immune escape, thus amenable for therapeutic intervention.
Asunto(s)
Vigilancia Inmunológica , Secuencias Reguladoras de Ácidos Nucleicos , División Celular , Línea Celular Tumoral , CromatinaRESUMEN
In healthy adults, the major peripheral blood γδ T-cell subset expresses the Vγ9Vδ2 TCR and displays pleiotropic features. Here we report that coculture of naive Vγ9Vδ2 T cells with phosphoantigens and a cocktail of cytokines (IL-1-ß, TGF-ß, IL-6, and IL-23), leads to selective expression of the transcription factor RORγt and polarization toward IL-17 production. IL-17(+) Vγ9Vδ2 T cells express the chemokine receptor CCR6 and produce IL-17 but neither IL-22 nor IFN-γ; they have a predominant terminally differentiated (CD27(-)CD45RA(+)) phenotype and express granzyme B, TRAIL, FasL, and CD161. On antigen activation, IL-17(+) Vγ9Vδ2 T cells rapidly induce CXCL8-mediated migration and phagocytosis of neutrophils and IL-17-dependent production of ß-defensin by epithelial cells, indicating that they may be involved in host immune responses against infectious microorganisms. Accordingly, an increased percentage of IL-17(+) Vγ9Vδ2 lymphocytes is detected in the peripheral blood and at the site of disease in children with bacterial meningitis, and this pattern was reversed after successful antibacterial therapy. Most notably, the phenotype of IL-17(+) Vγ9Vδ2 T cells in children with meningitis matches that of in vitro differentiated IL-17(+) Vγ9Vδ2 T cells. Our findings delineate a previously unknown subset of human IL-17(+) Vγ9Vδ2 T lymphocytes implicated in the pathophysiology of inflammatory responses during bacterial infections.
Asunto(s)
Interleucina-17/metabolismo , Meningitis Bacterianas/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Células Th17/inmunología , Células Th17/metabolismo , Adolescente , Adulto , Antígenos Bacterianos/inmunología , Diferenciación Celular/inmunología , Linaje de la Célula/inmunología , Células Cultivadas , Niño , Preescolar , Técnicas de Cocultivo , Femenino , Humanos , Inmunofenotipificación , Interleucina-17/inmunología , Interleucina-8/inmunología , Interleucina-8/metabolismo , Masculino , Meningitis Bacterianas/fisiopatología , Neutrófilos/citología , Neutrófilos/inmunología , Fagocitosis/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Células Th17/microbiología , beta-Defensinas/inmunología , beta-Defensinas/metabolismoRESUMEN
Tumor-initiating cells are responsible for tumor maintenance and relapse in solid and hematologic cancers. Although tumor-initiating cells were initially believed to be mainly quiescent, rapidly proliferating tumorigenic cells were found in breast cancer. In colon cancer, the proliferative activity of the tumorigenic population has not been defined, although it represents an essential parameter for the development of more effective therapeutic strategies. Here, we show that tumorigenic colon cancer cells can be found in a rapidly proliferating state in vitro and in vivo, both in human tumors and mouse xenografts. Inhibitors of polo-like kinase1 (Plk1), a mitotic kinase essential for cell proliferation, demonstrated maximal efficiency over other targeted compounds and chemotherapeutic agents in inducing death of colon cancer-initiating cells in vitro. In vivo, Plk1 inhibitors killed CD133(+) colon cancer cells leading to complete growth arrest of colon cancer stem cell-derived xenografts, whereas chemotherapeutic agents only slowed tumor progression. While chemotherapy treatment increased CD133(+) cell proliferation, treatment with Plk1 inhibitors eliminated all proliferating tumor-initiating cells. Quiescent CD133(+) cells that survived the treatment with Plk1 inhibitors could be killed by subsequent Plk1 inhibition when they exited from quiescence. Altogether, these results provide a new insight into the proliferative status of colon tumor-initiating cells both in basal conditions and in response to therapy and indicate Plk1 inhibitors as potentially useful in the treatment of colorectal cancer.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Neoplasias del Colon/enzimología , Neoplasias del Colon/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Antígeno AC133 , Animales , Antígenos CD/biosíntesis , Ciclo Celular/efectos de los fármacos , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/genética , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Neoplasias del Colon/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Glicoproteínas/biosíntesis , Humanos , Inmunohistoquímica , Ratones , Ratones Endogámicos NOD , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Péptidos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Pteridinas/farmacología , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Trasplante Heterólogo , Quinasa Tipo Polo 1RESUMEN
Colon carcinoma is the second most common cause of death from cancer. The isolation and characterization of tumorigenic colon cancer cells may help to devise novel diagnostic and therapeutic procedures. Although there is increasing evidence that a rare population of undifferentiated cells is responsible for tumour formation and maintenance, this has not been explored for colorectal cancer. Here, we show that tumorigenic cells in colon cancer are included in the high-density CD133+ population, which accounts for about 2.5% of the tumour cells. Subcutaneous injection of colon cancer CD133+ cells readily reproduced the original tumour in immunodeficient mice, whereas CD133- cells did not form tumours. Such tumours were serially transplanted for several generations, in each of which we observed progressively faster tumour growth without significant phenotypic alterations. Unlike CD133- cells, CD133+ colon cancer cells grew exponentially for more than one year in vitro as undifferentiated tumour spheres in serum-free medium, maintaining the ability to engraft and reproduce the same morphological and antigenic pattern of the original tumour. We conclude that colorectal cancer is created and propagated by a small number of undifferentiated tumorigenic CD133+ cells, which should therefore be the target of future therapies.
Asunto(s)
Antígenos CD/metabolismo , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Glicoproteínas/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Péptidos/metabolismo , Antígeno AC133 , Animales , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Humanos , Ratones , Ratones SCID , Trasplante de Neoplasias , Fenotipo , Trasplante HeterólogoRESUMEN
Background: Diffuse large B-cell lymphoma (DLBCL) is a hematological malignancy representing one-third of non-Hodgkin's lymphoma cases. Notwithstanding immunotherapy in combination with chemotherapy (R-CHOP) is an effective therapeutic approach for DLBCL, a subset of patients encounters treatment resistance, leading to low survival rates. Thus, there is an urgent need to identify predictive biomarkers for DLBCL including the elderly population, which represents the fastest-growing segment of the population in Western countries. Methods: Gene expression profiles of n=414 DLBCL biopsies were retrieved from the public dataset GSE10846. Differentially expressed genes (DEGs) (fold change >1.4, p-value <0.05, n=387) have been clustered in responder and non-responder patient cohorts. An enrichment analysis has been performed on the top 30 up-regulated genes of responder and non-responder patients to identify the signatures involved in gene ontology (MSigDB). The more significantly up-regulated DEGs have been validated in our independent collection of formalin-fixed paraffin-embedded (FFPE) biopsy samples of elderly DLBCL patients, treated with R-CHOP as first-line therapy. Results: From the analysis of two independent cohorts of DLBCL patients emerged a gene signature able to predict the response to R-CHOP therapy. In detail, expression levels of EBF1, MYO6, CALR are associated with a significant worse overall survival. Conclusions: These results pave the way for a novel characterization of DLBCL biomarkers, aiding the stratification of responder versus non-responder patients.
Asunto(s)
Linfoma de Células B Grandes Difuso , Linfoma no Hodgkin , Humanos , Anciano , Anticuerpos Monoclonales de Origen Murino/uso terapéutico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Rituximab/uso terapéutico , Linfoma no Hodgkin/tratamiento farmacológico , Ciclofosfamida/uso terapéutico , Vincristina/uso terapéutico , Prednisona/uso terapéutico , Doxorrubicina/uso terapéutico , Biomarcadores , TransactivadoresRESUMEN
Among all cancers, colorectal cancer (CRC) is the 3rd most common and the 2nd leading cause of death worldwide. New therapeutic strategies are required to target cancer stem cells (CSCs), a subset of tumor cells highly resistant to present-day therapy and responsible for tumor relapse. CSCs display dynamic genetic and epigenetic alterations that allow quick adaptations to perturbations. Lysine-specific histone demethylase 1A (KDM1A also known as LSD1), a FAD-dependent H3K4me1/2 and H3K9me1/2 demethylase, was found to be upregulated in several tumors and associated with a poor prognosis due to its ability to maintain CSCs staminal features. Here, we explored the potential role of KDM1A targeting in CRC by characterizing the effect of KDM1A silencing in differentiated and CRC stem cells (CRC-SCs). In CRC samples, KDM1A overexpression was associated with a worse prognosis, confirming its role as an independent negative prognostic factor of CRC. Consistently, biological assays such as methylcellulose colony formation, invasion, and migration assays demonstrated a significantly decreased self-renewal potential, as well as migration and invasion potential upon KDM1A silencing. Our untargeted multi-omics approach (transcriptomic and proteomic) revealed the association of KDM1A silencing with CRC-SCs cytoskeletal and metabolism remodeling towards a differentiated phenotype, supporting the role of KDM1A in CRC cells stemness maintenance. Also, KDM1A silencing resulted in up-regulation of miR-506-3p, previously reported to play a tumor-suppressive role in CRC. Lastly, loss of KDM1A markedly reduced 53BP1 DNA repair foci, implying the involvement of KDM1A in the DNA damage response. Overall, our results indicate that KDM1A impacts CRC progression in several non-overlapping ways, and therefore it represents a promising epigenetic target to prevent tumor relapse.
RESUMEN
Thyroid carcinoma (TC) is the most common malignancy of endocrine organs. The cell subpopulation in the lineage hierarchy that serves as cell of origin for the different TC histotypes is unknown. Human embryonic stem cells (hESCs) with appropriate in vitro stimulation undergo sequential differentiation into thyroid progenitor cells (TPCs-day 22), which maturate into thyrocytes (day 30). Here, we create follicular cell-derived TCs of all the different histotypes based on specific genomic alterations delivered by CRISPR-Cas9 in hESC-derived TPCs. Specifically, TPCs harboring BRAFV600E or NRASQ61R mutations generate papillary or follicular TC, respectively, whereas addition of TP53R248Q generate undifferentiated TCs. Of note, TCs arise by engineering TPCs, whereas mature thyrocytes have a very limited tumorigenic capacity. The same mutations result in teratocarcinomas when delivered in early differentiating hESCs. Tissue Inhibitor of Metalloproteinase 1 (TIMP1)/Matrix metallopeptidase 9 (MMP9)/Cluster of differentiation 44 (CD44) ternary complex, in cooperation with Kisspeptin receptor (KISS1R), is involved in TC initiation and progression. Increasing radioiodine uptake, KISS1R and TIMP1 targeting may represent a therapeutic adjuvant option for undifferentiated TCs.
Asunto(s)
Radioisótopos de Yodo , Neoplasias de la Tiroides , Humanos , Receptores de Kisspeptina-1/genética , Inhibidor Tisular de Metaloproteinasa-1/genética , Neoplasias de la Tiroides/genética , Células Madre Embrionarias , Proteínas Proto-Oncogénicas B-raf/genética , MutaciónRESUMEN
BACKGROUND & AIMS: The limited clinical response observed in many patients with colorectal cancer may be related to the presence of chemoresistant colorectal cancer stem cells (CRC-SCs). Bone morphogenetic protein 4 (BMP4) promotes the differentiation of normal colonic stem cells. We investigated whether BMP4 might be used to induce differentiation of CRC-SCs and for therapeutic purposes. METHODS: CRC-SCs were isolated from 25 tumor samples based on expression of CD133 or using a selection culture medium. BMP4 expression and activity on CRC-SCs were evaluated in vitro; progeny of the stem cells were evaluated by immunofluorescence, immunoblot, and flow cytometry analyses. The potential therapeutic effect of BMP4 was assessed in immunocompromised mice after injection of CRC-SCs that responded to chemotherapy (n = 4) or that did not (n = 2). RESULTS: CRC-SCs did not express BMP4 whereas differentiated cells did. Recombinant BMP4 promoted differentiation and apoptosis of CRC-SCs in 12 of 15 independent experiments; this effect did not depend on Small Mothers against decapentaplegic (Smad)4 expression level or microsatellite stability. BMP4 activated the canonical and noncanonical BMP signaling pathways, including phosphoInositide 3-kinase (PI3K) and PKB (protein kinase B)/AKT. Mutations in PI3K or loss of Phosphatase and Tensin homolog (PTEN) in Smad4-defective tumors made CRC-SCs unresponsive to BMP4. Administration of BMP4 to immunocompromised mice with tumors that arose from CRC-SCs increased the antitumor effects of 5-fluorouracil and oxaliplatin. CONCLUSIONS: BMP4 promotes terminal differentiation, apoptosis, and chemosensitization of CRC-SCs in tumors that do not have simultaneous mutations in Smad4 and constitutive activation of PI3K. BMP4 might be developed as a therapeutic agent against cancer stem cells in advanced colorectal tumors.
Asunto(s)
Antineoplásicos/uso terapéutico , Proteína Morfogenética Ósea 4/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Fluorouracilo/uso terapéutico , Células Madre Neoplásicas/efectos de los fármacos , Compuestos Organoplatinos/uso terapéutico , Antígeno AC133 , Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/patología , Anciano , Anciano de 80 o más Años , Animales , Antígenos CD/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proteína Morfogenética Ósea 4/farmacología , Diferenciación Celular , Células Cultivadas , Neoplasias Colorrectales/patología , Femenino , Glicoproteínas/metabolismo , Humanos , Masculino , Ratones , Inestabilidad de Microsatélites , Persona de Mediana Edad , Mutación , Oxaliplatino , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Péptidos/metabolismo , Fosfatidilinositol 3-Quinasa/genética , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Smad4/metabolismoRESUMEN
Imatinib mesylate (imatinib), a competitive inhibitor of the BCR-ABL tyrosine kinase, is highly effective against chronic myelogenous leukemia (CML) cells. However, because 20-30% of patients affected by CML display either primary or secondary resistance to imatinib, intentional activation of Vgamma9Vdelta2 T cells by phosphoantigens or by agents that cause their accumulation within cells, such as zoledronate, may represent a promising strategy for the design of a novel and highly innovative immunotherapy capable to overcome imatinib resistance. In this study, we show that Vgamma9Vdelta2 T lymphocytes recognize, trogocytose, and efficiently kill imatinib-sensitive and -resistant CML cell lines pretreated with zoledronate. Vgamma9Vdelta2 T cell cytotoxicity was largely dependent on the granule exocytosis- and partly on TRAIL-mediated pathways, was TCR-mediated, and required isoprenoid biosynthesis by zoledronate-treated CML cells. Importantly, Vgamma9Vdelta2 T cells from patients with CML can be induced by zoledronate to develop antitumor activity against autologous and allogeneic zoledronate-treated leukemia cells, both in vitro and when transferred into immunodeficient mice in vivo. We conclude that intentional activation of Vgamma9Vdelta2 T cells by zoledronate may substantially increase their antileukemia activities and represent a novel strategy for CML immunotherapy.