Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Curr Osteoporos Rep ; 22(1): 146-151, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38216806

RESUMEN

PURPOSE OF REVIEW: There were two primary purposes to our reviews. First, to provide an update to the scientific community about the impacts of COVID-19 on musculoskeletal health. Second, was to determine the value of using a large language model, ChatGPT 4.0, in the process of writing a scientific review article. To accomplish these objectives, we originally set out to write three review articles on the topic using different methods to produce the initial drafts of the review articles. The first review article was written in the traditional manner by humans, the second was to be written exclusively using ChatGPT (AI-only or AIO), and the third approach was to input the outline and references selected by humans from approach 1 into ChatGPT, using the AI to assist in completing the writing (AI-assisted or AIA). All review articles were extensively fact-checked and edited by all co-authors leading to the final drafts of the manuscripts, which were significantly different from the initial drafts. RECENT FINDINGS: Unfortunately, during this process, it became clear that approach 2 was not feasible for a very recent topic like COVID-19 as at the time, ChatGPT 4.0 had a cutoff date of September 2021 and all articles published after this date had to be provided to ChatGPT, making approaches 2 and 3 virtually identical. Therefore, only two approaches and two review articles were written (human and AI-assisted). Here we found that the human-only approach took less time to complete than the AI-assisted approach. This was largely due to the number of hours required to fact-check and edit the AI-assisted manuscript. Of note, the AI-assisted approach resulted in inaccurate attributions of references (about 20%) and had a higher similarity index suggesting an increased risk of plagiarism. The main aim of this project was to determine whether the use of AI could improve the process of writing a scientific review article. Based on our experience, with the current state of technology, it would not be advised to solely use AI to write a scientific review article, especially on a recent topic.


Asunto(s)
COVID-19 , Humanos , Escritura , Inteligencia Artificial
2.
Curr Osteoporos Rep ; 22(1): 122-134, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38221578

RESUMEN

PURPOSE OF REVIEW: SARS-CoV-2 drove the catastrophic global phenomenon of the COVID-19 pandemic resulting in a multitude of systemic health issues, including bone loss. The purpose of this review is to summarize recent findings related to bone loss and potential mechanisms. RECENT FINDINGS: The early clinical evidence indicates an increase in vertebral fractures, hypocalcemia, vitamin D deficiencies, and a loss in BMD among COVID-19 patients. Additionally, lower BMD is associated with more severe SARS-CoV-2 infection. Preclinical models have shown bone loss and increased osteoclastogenesis. The bone loss associated with SARS-CoV-2 infection could be the result of many factors that directly affect the bone such as higher inflammation, activation of the NLRP3 inflammasome, recruitment of Th17 cells, the hypoxic environment, and changes in RANKL/OPG signaling. Additionally, SARS-CoV-2 infection can exert indirect effects on the skeleton, as mechanical unloading may occur with severe disease (e.g., bed rest) or with BMI loss and muscle wasting that has also been shown to occur with SARS-CoV-2 infection. Muscle wasting can also cause systemic issues that may influence the bone. Medications used to treat SARS-CoV-2 infection also have a negative effect on the bone. Lastly, SARS-CoV-2 infection may also worsen conditions such as diabetes and negatively affect kidney function, all of which could contribute to bone loss and increased fracture risk. SARS-CoV-2 can negatively affect the bone through multiple direct and indirect mechanisms. Future work will be needed to determine what patient populations are at risk of COVID-19-related increases in fracture risk, the mechanisms behind bone loss, and therapeutic options. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.


Asunto(s)
Enfermedades Óseas Metabólicas , COVID-19 , Humanos , COVID-19/complicaciones , SARS-CoV-2 , Pandemias , Inteligencia Artificial , Factores de Riesgo
3.
Curr Osteoporos Rep ; 22(1): 135-145, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38236510

RESUMEN

PURPOSE OF REVIEW: SARS-CoV-2 infection, the culprit of the COVID-19 pandemic, has been associated with significant long-term effects on various organ systems, including bone health. This review explores the current understanding of the impacts of SARS-CoV-2 infection on bone health and its potential long-term consequences. RECENT FINDINGS: As part of the post-acute sequelae of SARS-CoV-2 infection, bone health changes are affected by COVID-19 both directly and indirectly, with multiple potential mechanisms and risk factors involved. In vitro and preclinical studies suggest that SARS-CoV-2 may directly infect bone marrow cells, leading to alterations in bone structure and osteoclast numbers. The virus can also trigger a robust inflammatory response, often referred to as a "cytokine storm", which can stimulate osteoclast activity and contribute to bone loss. Clinical evidence suggests that SARS-CoV-2 may lead to hypocalcemia, altered bone turnover markers, and a high prevalence of vertebral fractures. Furthermore, disease severity has been correlated with a decrease in bone mineral density. Indirect effects of SARS-CoV-2 on bone health, mediated through muscle weakness, mechanical unloading, nutritional deficiencies, and corticosteroid use, also contribute to the long-term consequences. The interplay of concurrent conditions such as diabetes, obesity, and kidney dysfunction with SARS-CoV-2 infection further complicates the disease's impact on bone health. SARS-CoV-2 infection directly and indirectly affects bone health, leading to potential long-term consequences. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Densidad Ósea , Inteligencia Artificial , Síndrome Post Agudo de COVID-19
4.
mBio ; 15(5): e0085924, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38639536

RESUMEN

Visceral leishmaniasis is a deadly infectious disease and is one of the world's major neglected health problems. Because the symptoms of infection are similar to other endemic diseases, accurate diagnosis is crucial for appropriate treatment. Definitive diagnosis using splenic or bone marrow aspirates is highly invasive, and so, serological assays are preferred, including the direct agglutination test (DAT) or rK39 strip test. These tests, however, are either difficult to perform in the field (DAT) or lack specificity in some endemic regions (rK39), making the development of new tests a research priority. The availability of Leishmania spp. genomes presents an opportunity to identify new diagnostic targets. Here, we use genome data and a mammalian protein expression system to create a panel of 93 proteins consisting of the extracellular ectodomains of the Leishmania donovani cell surface and secreted proteins. We use these panel and sera from murine experimental infection models and natural human and canine infections to identify new candidates for serological diagnosis. We observed a concordance between the most immunoreactive antigens in different host species and transmission settings. The antigen encoded by the LdBPK_323600.1 gene can diagnose Leishmania infections with high sensitivity and specificity in patient cohorts from different endemic regions including Bangladesh and Ethiopia. In longitudinal sampling of treated patients, we observed reductions in immunoreactivity to LdBPK_323600.1 suggesting it could be used to diagnose treatment success. In summary, we have identified new antigens that could contribute to improved serological diagnostic tests to help control the impact of this deadly tropical infectious disease. IMPORTANCE: Visceral leishmaniasis is fatal if left untreated with patients often displaying mild and non-specific symptoms during the early stages of infection making accurate diagnosis important. Current methods for diagnosis require highly trained medical staff to perform highly invasive biopsies of the liver or bone marrow which pose risks to the patient. Less invasive molecular tests are available but can suffer from regional variations in their ability to accurately diagnose an infection. To identify new diagnostic markers of visceral leishmaniasis, we produced and tested a panel of 93 proteins identified from the genome of the parasite responsible for this disease. We found that the pattern of host antibody reactivity to these proteins was broadly consistent across naturally acquired infections in both human patients and dogs, as well as experimental rodent infections. We identified a new protein called LdBPK_323600.1 that could accurately diagnose visceral leishmaniasis infections in humans.


Asunto(s)
Anticuerpos Antiprotozoarios , Antígenos de Protozoos , Leishmania donovani , Leishmaniasis Visceral , Proteínas Protozoarias , Pruebas Serológicas , Leishmania donovani/genética , Leishmania donovani/inmunología , Leishmaniasis Visceral/diagnóstico , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/parasitología , Animales , Humanos , Ratones , Perros , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Anticuerpos Antiprotozoarios/sangre , Anticuerpos Antiprotozoarios/inmunología , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Pruebas Serológicas/métodos , Biomarcadores/sangre , Femenino , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Ratones Endogámicos BALB C , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Sensibilidad y Especificidad , Enfermedades de los Perros/diagnóstico , Enfermedades de los Perros/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA