Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 112(24): 7390-5, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26082545

RESUMEN

Recent calls for ocean planning envision informed management of social and ecological systems to sustain delivery of ecosystem services to people. However, until now, no coastal and marine planning process has applied an ecosystem-services framework to understand how human activities affect the flow of benefits, to create scenarios, and to design a management plan. We developed models that quantify services provided by corals, mangroves, and seagrasses. We used these models within an extensive engagement process to design a national spatial plan for Belize's coastal zone. Through iteration of modeling and stakeholder engagement, we developed a preferred plan, currently under formal consideration by the Belizean government. Our results suggest that the preferred plan will lead to greater returns from coastal protection and tourism than outcomes from scenarios oriented toward achieving either conservation or development goals. The plan will also reduce impacts to coastal habitat and increase revenues from lobster fishing relative to current management. By accounting for spatial variation in the impacts of coastal and ocean activities on benefits that ecosystems provide to people, our models allowed stakeholders and policymakers to refine zones of human use. The final version of the preferred plan improved expected coastal protection by >25% and more than doubled the revenue from fishing, compared with earlier versions based on stakeholder preferences alone. Including outcomes in terms of ecosystem-service supply and value allowed for explicit consideration of multiple benefits from oceans and coasts that typically are evaluated separately in management decisions.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Océanos y Mares , Animales , Belice , Conservación de los Recursos Naturales/legislación & jurisprudencia , Arrecifes de Coral , Explotaciones Pesqueras , Humanos , Biología Marina , Modelos Teóricos , Palinuridae , Política Pública , Recreación
2.
Evol Appl ; 15(3): 459-470, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35386400

RESUMEN

Coastal Indigenous communities that rely on subsistence harvests are uniquely vulnerable to declines in nearshore species. The basket cockle Clinocardium nuttallii is among the favored foods of Indigenous people along the northwest Pacific coast of North America, yet localized declines in their abundance have led to interest in stock enhancement efforts. We used a population genomics approach to examine potential risks associated with stock enhancement of C. nuttallii in the southern Salish Sea, a large inland estuary that includes Puget Sound. More than 8000 single nucleotide polymorphisms across 349 individuals at 12 locations were assembled de novo using restriction site-associated DNA sequencing. Results indicated that C. nuttallii within the southern Salish Sea were distinct from those along the outer Pacific coast (F ST = 0.021-0.025). Within the southern Salish Sea, C. nuttallii populations appear to be well-connected despite numerous potential impediments to gene flow; Hood Canal, which experiences the lowest flushing rates of all Puget Sound sub-basins, was a minor exception to this strong connectivity. We found evidence of isolation by distance within the southern Salish Sea, but the slope of this relationship was shallow, and F ST values were low (F ST = 0.001-0.004). Meanwhile, outlier analyses did not support the hypothesis that southern Salish Sea sub-populations are locally adapted. Estimates of effective population size had no upper bound, suggesting potentially very high adaptive capacity in C. nuttallii, but also making it difficult to assess potential reductions in effective population size resulting from stock enhancement. We present several strategies to augment cockle populations for subsistence harvest that would limit risk to the genetic diversity of wild cockle populations.

3.
Integr Environ Assess Manag ; 12(2): 328-44, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26123999

RESUMEN

Businesses may be missing opportunities to account for ecosystem services in their decisions, because they do not have methods to quantify and value ecosystem services. We developed a method to quantify and value coastal protection and other ecosystem services in the context of a cost-benefit analysis of hurricane risk mitigation options for a business. We first analyze linked biophysical and economic models to examine the potential protection provided by marshes. We then applied this method to The Dow Chemical Company's Freeport, Texas facility to evaluate natural (marshes), built (levee), and hybrid (marshes and a levee designed for marshes) defenses against a 100-y hurricane. Model analysis shows that future sea-level rise decreases marsh area, increases flood heights, and increases the required levee height (12%) and cost (8%). In this context, marshes do not provide sufficient protection to the facility, located 12 km inland, to warrant a change in levee design for a 100-y hurricane. Marshes do provide some protection near shore and under smaller storm conditions, which may help maintain the coastline and levee performance in the face of sea-level rise. In sum, the net present value to the business of built defenses ($217 million [2010 US$]) is greater than natural defenses ($15 million [2010 US$]) and similar to the hybrid defense scenario ($229 million [2010 US$]). Examination of a sample of public benefits from the marshes shows they provide at least $117 million (2010 US$) in coastal protection, recreational value, and C sequestration to the public, while supporting 12 fisheries and more than 300 wildlife species. This study provides information on where natural defenses may be effective and a replicable approach that businesses can use to incorporate private, as well as public, ecosystem service values into hurricane risk management at other sites.


Asunto(s)
Conservación de los Recursos Naturales/economía , Tormentas Ciclónicas , Ecosistema , Análisis Costo-Beneficio , Modelos Teóricos , Riesgo , Humedales
4.
PLoS One ; 7(11): e47598, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23144824

RESUMEN

Many hope that ocean waves will be a source for clean, safe, reliable and affordable energy, yet wave energy conversion facilities may affect marine ecosystems through a variety of mechanisms, including competition with other human uses. We developed a decision-support tool to assist siting wave energy facilities, which allows the user to balance the need for profitability of the facilities with the need to minimize conflicts with other ocean uses. Our wave energy model quantifies harvestable wave energy and evaluates the net present value (NPV) of a wave energy facility based on a capital investment analysis. The model has a flexible framework and can be easily applied to wave energy projects at local, regional, and global scales. We applied the model and compatibility analysis on the west coast of Vancouver Island, British Columbia, Canada to provide information for ongoing marine spatial planning, including potential wave energy projects. In particular, we conducted a spatial overlap analysis with a variety of existing uses and ecological characteristics, and a quantitative compatibility analysis with commercial fisheries data. We found that wave power and harvestable wave energy gradually increase offshore as wave conditions intensify. However, areas with high economic potential for wave energy facilities were closer to cable landing points because of the cost of bringing energy ashore and thus in nearshore areas that support a number of different human uses. We show that the maximum combined economic benefit from wave energy and other uses is likely to be realized if wave energy facilities are sited in areas that maximize wave energy NPV and minimize conflict with existing ocean uses. Our tools will help decision-makers explore alternative locations for wave energy facilities by mapping expected wave energy NPV and helping to identify sites that provide maximal returns yet avoid spatial competition with existing ocean uses.


Asunto(s)
Energía Renovable/economía , Movimientos del Agua , Algoritmos , Colombia Británica , Conservación de los Recursos Naturales , Técnicas de Apoyo para la Decisión , Electricidad , Ambiente , Explotaciones Pesqueras/estadística & datos numéricos , Humanos , Océanos y Mares , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA