Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Biol Sci ; 285(1882)2018 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-30051833

RESUMEN

Light is a fundamental driver of ecosystem dynamics, affecting the rate of photosynthesis and primary production. In spite of its importance, less is known about its community-scale effects on aquatic ecosystems compared with those of nutrient loading. Understanding light limitation is also important for ecosystem management, as human activities have been rapidly altering light availability to aquatic ecosystems. Here we show that decreasing light can paradoxically increase phytoplankton abundance in shallow lakes. Our results, based on field manipulation experiments, field observations and models, suggest that, under competition for light and nutrients between phytoplankton and submersed macrophytes, alternative stable states are possible under high-light supply. In a macrophyte-dominated state, as light decreases phytoplankton density increases, because macrophytes (which effectively compete for nutrients released from the sediment) are more severely affected by light reduction. Our results demonstrate how species interactions with spatial heterogeneity can cause an unexpected outcome in complex ecosystems. An implication of our findings is that partial surface shading for controlling harmful algal bloom may, counterintuitively, increase phytoplankton abundance by decreasing macrophytes. Therefore, to predict how shallow lake ecosystems respond to environmental perturbations, it is essential to consider effects of light on the interactions between pelagic and benthic producers.


Asunto(s)
Luz , Fitoplancton/crecimiento & desarrollo , Biomasa , Chara/crecimiento & desarrollo , Chara/efectos de la radiación , Ecosistema , Modelos Teóricos , Fotosíntesis , Fitoplancton/efectos de la radiación , Densidad de Población , Dinámica Poblacional
2.
Commun Biol ; 4(1): 49, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420411

RESUMEN

The biomass ratio of herbivores to primary producers reflects the structure of a community. Four primary factors have been proposed to affect this ratio, including production rate, defense traits and nutrient contents of producers, and predation by carnivores. However, identifying the joint effects of these factors across natural communities has been elusive, in part because of the lack of a framework for examining their effects simultaneously. Here, we develop a framework based on Lotka-Volterra equations for examining the effects of these factors on the biomass ratio. We then utilize it to test if these factors simultaneously affect the biomass ratio of freshwater plankton communities. We found that all four factors contributed significantly to the biomass ratio, with carnivore abundance having the greatest effect, followed by producer stoichiometric nutrient content. Thus, the present framework should be useful for examining the multiple factors shaping various types of communities, both aquatic and terrestrial.


Asunto(s)
Biomasa , Cadena Alimentaria , Herbivoria , Modelos Biológicos , Animales , Cyprinidae , Fundulidae , Plancton
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA