Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Clin Sci (Lond) ; 132(19): 2147-2161, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30209036

RESUMEN

Physical inactivity gives rise to numerous diseases and organismal dysfunctions, particularly those related to aging. Musculoskeletal disorders including muscle atrophy, which can result from a sedentary lifestyle, aggravate locomotive malfunction and evoke a vicious circle leading to severe functional disruptions of vital organs such as the brain and cardiovascular system. Although the significance of physical activity is evident, molecular mechanisms behind its beneficial effects are poorly understood. Here, we show that massage-like mechanical interventions modulate immobilization-induced pro-inflammatory responses of macrophages in situ and alleviate muscle atrophy. Local cyclical compression (LCC) on mouse calves, which generates intramuscular pressure waves with amplitude of 50 mmHg, partially restores the myofiber thickness and contracting forces of calf muscles that are decreased by hindlimb immobilization. LCC tempers the increase in the number of cells expressing pro-inflammatory proteins, tumor necrosis factor-α and monocyte chemoattractant protein-1 (MCP-1), including macrophages in situ The reversing effect of LCC on immobilization-induced thinning of myofibers is almost completely nullified when macrophages recruited from circulating blood are depleted by administration of clodronate liposomes. Furthermore, application of pulsatile fluid shear stress, but not hydrostatic pressure, reduces the expression of MCP-1 in macrophages in vitro Together with the LCC-induced movement of intramuscular interstitial fluid detected by µCT analysis, these results suggest that mechanical modulation of macrophage function is involved in physical inactivity-induced muscle atrophy and inflammation. Our findings uncover the implication of mechanosensory function of macrophages in disuse muscle atrophy, thereby opening a new path to develop a novel therapeutic strategy utilizing mechanical interventions.


Asunto(s)
Macrófagos/fisiología , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/fisiopatología , Atrofia Muscular/fisiopatología , Estrés Mecánico , Animales , Quimiocina CCL2/metabolismo , Femenino , Suspensión Trasera/fisiología , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
2.
J Mol Cell Cardiol ; 49(6): 972-83, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20869968

RESUMEN

Implantation of various types of cells into the heart has been reported to be effective for heart failure, however, it is unknown what kinds of cells are most suitable for myocardial repair. To examine which types of cells are most effective, we injected cell-Puramatrix™ (PM) complex into the border area and overlaid the cell-PM patch on the myocardial infarction (MI) area. We compared cardiac morphology and function at 2 weeks after transplantation. Among clonal stem cell antigen-1 positive cardiac progenitors with PM (cSca-1/PM), bone marrow mononuclear cells with PM (BM/PM), skeletal myoblasts with PM (SM/PM), adipose tissue-derived mesenchymal cells with PM (AMC/PM), PM alone (PM), and non-treated MI group (MI), the infarct area of cSca-1/PM was smaller than that of BM/PM, SM/PM, PM and MI. cSca-1/PM and AMC/PM attenuated ventricular enlargement and restored cardiac function in comparison with MI. Capillary density in the infarct area of cSca-1/PM was higher than that of other five groups. The percentage of TUNEL positive cardiomyocytes in the infarct area of cSca-1/PM was lower than that of MI and PM. cSca-1 secreted VEGF and some of them differentiated into cardiomyocytes and vascular smooth muscle cells. These results suggest that transplantation of cSca-1/PM most effectively prevents cardiac remodeling and dysfunction through angiogenesis, inhibition of apoptosis and myocardial regeneration.


Asunto(s)
Pruebas de Función Cardíaca/efectos de los fármacos , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/terapia , Miocardio/citología , Péptidos/farmacología , Trasplante de Células Madre , Células Madre/citología , Actinas/metabolismo , Inductores de la Angiogénesis/metabolismo , Animales , Antígenos Ly/metabolismo , Apoptosis/efectos de los fármacos , Capilares/efectos de los fármacos , Capilares/metabolismo , Capilares/patología , Línea Celular , Transdiferenciación Celular/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Ratones , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Células Madre/efectos de los fármacos , Sístole/efectos de los fármacos , Ultrasonografía , Remodelación Ventricular/efectos de los fármacos , Factor de von Willebrand/metabolismo
3.
J Vis Exp ; (151)2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31589203

RESUMEN

Massage is generally recognized to be beneficial for relieving pain and inflammation. Although previous studies have reported anti-inflammatory effects of massage on skeletal muscles, the molecular mechanisms behind are poorly understood. We have recently developed a simple device to apply local cyclical compression (LCC), which can generate intramuscular pressure waves with varying amplitudes. Using this device, we have demonstrated that LCC modulates inflammatory responses of macrophages in situ and alleviates immobilization-induced muscle atrophy. Here, we describe protocols for the optimization and application of LCC as a massage-like intervention against immobilization-induced inflammation and atrophy of skeletal muscles of mouse hindlimbs. The protocol that we have developed can be useful for investigating the mechanism underlying beneficial effects of physical exercise and massage. Our experimental system provides a prototype of the analytical approach to elucidate the mechanical regulation of muscle homeostasis, although further development needs to be made for more comprehensive studies.


Asunto(s)
Masaje , Músculo Esquelético , Atrofia Muscular/terapia , Animales , Miembro Posterior , Inmovilización , Inflamación/terapia , Macrófagos , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/fisiología , Atrofia Muscular/etiología , Condicionamiento Físico Animal , Presión
4.
Matrix Biol ; 36: 28-38, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24726953

RESUMEN

Stem cell antigen-1 (Sca1 or Ly6A/E) is a cell surface marker that is widely expressed in mesenchymal stem cells, including adipose-derived stem cells (ASCs). We hypothesized that the fat depot-specific gene signature of Sca1(high) ASCs may play the major role in defining adipose tissue function and extracellular matrix (ECM) remodeling in a depot-specific manner. Herein we aimed to characterize the unique gene signature and ECM remodeling of Sca1(high) ASCs isolated from subcutaneous (inguinal) and visceral (epididymal) adipose tissues. Sca1(high) ASCs are found in the adventitia and perivascular areas of adipose tissues. Sca1(high) ASCs purified with magnetic-activated cell sorting (MACS) demonstrate dendrite or round shape with the higher expression of cytokines and chemokines (e.g., Il6, Cxcl1) and the lower expression of a glucose transporter (Glut1). Subcutaneous and visceral fat-derived Sca1(high) ASCs particularly differ in the gene expressions of adhesion and ECM molecules. While the expression of the major membrane-type collagenase (MMP14) is comparable between the groups, the expressions of secreted collagenases (MMP8 and MMP13) are higher in visceral Sca1(high) ASCs than in subcutaneous ASCs. Consistently, slow but focal MMP-dependent collagenolysis was observed with subcutaneous adipose tissue-derived vascular stromal cells, whereas rapid and bulk collagenolysis was observed with visceral adipose tissue-derived cells in MMP-dependent and -independent manners. These results suggest that the fat depot-specific gene signatures of ASCs may contribute to the distinct patterns of ECM remodeling and adipose function in different fat depots.


Asunto(s)
Adipogénesis/genética , Antígenos Ly/biosíntesis , Grasa Intraabdominal/metabolismo , Proteínas de la Membrana/biosíntesis , Grasa Subcutánea/metabolismo , Tejido Adiposo/crecimiento & desarrollo , Tejido Adiposo/metabolismo , Animales , Diferenciación Celular/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones
5.
J Am Heart Assoc ; 3(6): e001101, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25468657

RESUMEN

BACKGROUND: Cardiac cell therapy has been proposed as one of the new strategies against myocardial infarction. Although several reports showed improvement of the function of ischemic heart, the effects of cell therapy vary among the studies and the mechanisms of the beneficial effects are still unknown. Previously, we reported that clonal stem cell antigen-1-positive cardiac progenitor cells exerted a therapeutic effect when transplanted into the ischemic heart. Our aims were to identify the cardiac progenitor-specific paracrine factor and to elucidate the mechanism of its beneficial effect. METHODS AND RESULTS: By using an antibody array, we found that soluble junctional adhesion molecule-A (JAM-A) was abundantly secreted from cardiac progenitor cells. Pretreatment of neutrophils with conditioned medium from cultured cardiac progenitor cells or soluble JAM-A inhibited transendothelial migration and reduced motility of neutrophils. These inhibitory effects were attenuated by anti-JAM-A neutralizing antibody. Injection of cardiac progenitor cells into infarct heart attenuated neutrophil infiltration and expression of inflammatory cytokines. Injection of soluble JAM-A-expressing, but not of JAM-A siRNA-expressing, cardiac progenitor cells into the infarct heart prevented cardiac remodeling and reduced fibrosis area. CONCLUSIONS: Soluble JAM-A secreted from cardiac progenitor cells reduces infiltration of neutrophils after myocardial infarction and ameliorates tissue damage through prevention of excess inflammation. Our finding may lead to a new therapy for cardiovascular disease by using the anti-inflammatory effect of JAM-A.


Asunto(s)
Antiinflamatorios/metabolismo , Moléculas de Adhesión Celular/metabolismo , Inflamación/prevención & control , Infarto del Miocardio/cirugía , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/trasplante , Receptores de Superficie Celular/metabolismo , Trasplante de Células Madre/métodos , Células Madre/metabolismo , Animales , Anticuerpos Neutralizantes/farmacología , Moléculas de Adhesión Celular/antagonistas & inhibidores , Moléculas de Adhesión Celular/genética , Células Cultivadas , Técnicas de Cocultivo , Medios de Cultivo Condicionados/metabolismo , Modelos Animales de Enfermedad , Inflamación/metabolismo , Inflamación/patología , Inflamación/fisiopatología , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Infiltración Neutrófila , Neutrófilos/metabolismo , Interferencia de ARN , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/genética , Células Madre/efectos de los fármacos , Migración Transendotelial y Transepitelial , Transfección , Función Ventricular Izquierda , Remodelación Ventricular
6.
Endocrinology ; 154(12): 4548-59, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24140711

RESUMEN

Thrombospondin 1 (THBS1 or TSP-1) is a circulating glycoprotein highly expressed in hypertrophic visceral adipose tissues of humans and mice. High-fat diet (HFD) feeding induces the robust increase of circulating THBS1 in the early stages of HFD challenge. The loss of Thbs1 protects male mice from diet-induced weight gain and adipocyte hypertrophy. Hyperinsulinemic euglycemic clamp study has demonstrated that Thbs1-null mice are protected from HFD-induced insulin resistance. Tissue-specific glucose uptake study has revealed that the insulin-sensitive phenotype of Thbs1-null mice is mostly mediated by skeletal muscles. Further assessments of the muscle phenotype using RNA sequencing, quantitative PCR, and histological studies have demonstrated that Thbs1-null skeletal muscles are protected from the HFD-dependent induction of Col3a1 and Col6a1, coupled with a new collagen deposition. At the same time, the Thbs1-null mice display a better circadian rhythm and higher amplitude of energy expenditure with a browning phenotype in sc adipose tissues. These results suggest that THBS1, which circulates in response to a HFD, may induce insulin resistance and fibrotic tissue damage in skeletal muscles as well as the de-browning of sc adipose tissues in the early stages of a HFD challenge. Our study may shed new light on the pathogenic role played by a circulating extracellular matrix protein in the cross talk between adipose tissues and skeletal muscles during obesity progression.


Asunto(s)
Grasas de la Dieta/efectos adversos , Fibrosis/inducido químicamente , Resistencia a la Insulina/fisiología , Enfermedades Musculares/etiología , Trombospondina 1/metabolismo , Células 3T3-L1 , Tejido Adiposo Blanco/metabolismo , Animales , Grasas de la Dieta/administración & dosificación , Relación Dosis-Respuesta a Droga , Epidídimo , Regulación de la Expresión Génica/efectos de los fármacos , Técnica de Clampeo de la Glucosa , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Obesidad , Trombospondina 1/genética , Transcriptoma
7.
J Clin Invest ; 119(8): 2204-17, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19620770

RESUMEN

Cardiac progenitor cells are a potential source of cell therapy for heart failure. Although recent studies have shown that transplantation of cardiac stem/progenitor cells improves function of infarcted hearts, the precise mechanisms of the improvement in function remain poorly understood. The present study demonstrates that transplantation of sheets of clonally expanded stem cell antigen 1-positive (Sca-1-positive) cells (CPCs) ameliorates cardiac dysfunction after myocardial infarction in mice. CPC efficiently differentiated into cardiomyocytes and secreted various cytokines, including soluble VCAM-1 (sVCAM-1). Secreted sVCAM-1 induced migration of endothelial cells and CPCs and prevented cardiomyocyte death from oxidative stress through activation of Akt, ERK, and p38 MAPK. Treatment with antibodies specific for very late antigen-4 (VLA-4), a receptor of sVCAM-1, abolished the effects of CPC-derived conditioned medium on cardiomyocytes and CPCs in vitro and inhibited angiogenesis, CPC migration, and survival in vivo, which led to attenuation of improved cardiac function following transplantation of CPC sheets. These results suggest that CPC transplantation improves cardiac function after myocardial infarction through cardiomyocyte differentiation and paracrine mechanisms mediated via the sVCAM-1/VLA-4 signaling pathway.


Asunto(s)
Infarto del Miocardio/terapia , Miocitos Cardíacos/citología , Trasplante de Células Madre , Animales , Diferenciación Celular , Movimiento Celular , Supervivencia Celular , Células Cultivadas , Femenino , Integrina alfa4beta1/fisiología , Integrinas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/fisiopatología , Ratas , Molécula 1 de Adhesión Celular Vascular/análisis , Molécula 1 de Adhesión Celular Vascular/fisiología , Factor A de Crecimiento Endotelial Vascular/análisis , Factor A de Crecimiento Endotelial Vascular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA