RESUMEN
Human metapneumovirus (HMPV) is an important cause of acute lower respiratory infection in children and adults worldwide. There are four genetic subgroups of HMPV and both neutralizing antibodies and T cells contribute to protection. However, little is known about mechanisms of pathogenesis and most published work is based on a few extensively passaged, laboratory-adapted strains of HMPV. In this study, we isolated and characterized a panel of low passage HMPV clinical isolates representing all four genetic subgroups. The clinical isolates exhibited lower levels of in vitro replication compared to a lab-adapted strain. We compared disease phenotypes using a well-established mouse model. Several virulent isolates caused severe weight loss, lung pathology, airway dysfunction, and fatal disease in mice, which was confirmed in three inbred mouse strains. Disease severity did not correlate with lung viral titer, as virulent strains exhibited restricted replication in the lower airway. Virulent HMPV isolates were associated with markedly increased proinflammatory cytokine production and neutrophil influx; however, depletion of neutrophils or genetic ablation of inflammasome components did not reverse disease. Virulent clinical isolates induced markedly increased type I and type III interferon (IFN) secretion in vitro and in vivo. STAT1/2-deficient mice lacking both type I and type III IFN signaling showed reduced disease severity and increased lung viral replication. Inhibition of type I IFN signaling using a blocking antibody or genetic ablation of the type I IFN receptor reduced pathology with minimal effect on viral replication. Conversely, blockade of type III IFN signaling with a neutralizing antibody or genetic ablation of the IFN-lambda receptor had no effect on pathogenesis but restored viral replication. Collectively, these results demonstrate distinct roles for type I and type III IFN in HMPV pathogenesis and immunity.
Asunto(s)
Metapneumovirus , Infecciones por Paramyxoviridae , Infecciones del Sistema Respiratorio , Niño , Animales , Ratones , Humanos , Interferón lambda , Pulmón , Infecciones del Sistema Respiratorio/patología , InterferonesRESUMEN
A key mediator of T cell impairment during respiratory virus infection is the inhibitory receptor PD-1. PD-1 is induced on T cells following antigen exposure, whereas proinflammatory cytokines upregulate the ligands PD-L1 and PD-L2. Respiratory virus infection leads to upregulation of PD-L1 on airway epithelial cells, dendritic cells, and alveolar macrophages. However, the role of PD-L1 on different cell types in acute respiratory virus infections is not known. We sought to determine the role of PD-L1 on different cell types in CD8+ T cell impairment. We found that PD-L1-/- mice challenged with human metapneumovirus or influenza showed a similar level of CD8+ T cell impairment compared to wild-type (WT) mice. Moreover, virus clearance was delayed in PD-L1-/- mice compared to WT. CD8+ T cells from PD-L1-deficient mice expressed higher levels of inhibitory receptors both at baseline and after respiratory virus infection. The antibody blockade of PD-L2 failed to restore function to the impaired cells. While reciprocal bone marrow chimeras between WT and PD-L1-/- mice did not restore CD8+ T cell function after the respiratory virus challenge, mice that received the PD-L1-/- bone marrow had higher inhibitory receptor expression on CD8+ cells. This discrepancy in the inhibitory receptor expression suggests that cells of the hematopoietic compartment contribute to T cell impairment on CD8+ T cells.IMPORTANCEThe phenomenon of pulmonary CD8+ T cell impairment with diminished antiviral function occurs during acute respiratory virus infection mediated by Programmed Cell Death-1 (PD-1) signaling. Moreover, PD-1 blockade enhances T cell function to hasten viral clearance. The ligand PD-L1 is expressed in many cell types, but which cells drive lung T cell impairment is not known. We used genetic approaches to determine the contribution of PD-L1 on lung T cell impairment. We found that PD-L2 cannot compensate for the loss of PD-L1, and PD-L1-deficient mice exhibit increased expression of other inhibitory receptors. Bone marrow chimeras between PD-L1-deficient and wild-type mice indicated that hematopoietic PD-L1 expression is associated with inhibitory receptor upregulation and impairment.
Asunto(s)
Antígeno B7-H1 , Linfocitos T CD8-positivos , Proteína 2 Ligando de Muerte Celular Programada 1 , Animales , Humanos , Ratones , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/inmunología , Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Metapneumovirus/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Infecciones por Paramyxoviridae/inmunología , Infecciones por Paramyxoviridae/virología , Infecciones por Paramyxoviridae/genética , Proteína 2 Ligando de Muerte Celular Programada 1/genética , Proteína 2 Ligando de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/virologíaRESUMEN
Viruses are frequent causes of lower respiratory infection (LRI). Programmed cell death-1 (PD-1) signaling contributes to pulmonary CD8(+) T cell (TCD8) functional impairment during acute viral LRI, but the role of TCD8 impairment in viral clearance and immunopathology is unclear. We now find that human metapneumovirus infection induces virus-specific lung TCD8 that fail to produce effector cytokines or degranulate late postinfection, with minimally increased function even in the absence of PD-1 signaling. Impaired lung TCD8 upregulated multiple inhibitory receptors, including PD-1, lymphocyte activation gene 3 (LAG-3), T cell Ig mucin 3, and 2B4. Moreover, coexpression of these receptors continued to increase even after viral clearance, with most virus-specific lung TCD8 expressing three or more inhibitory receptors on day 14 postinfection. Viral infection also increased expression of inhibitory ligands by both airway epithelial cells and APCs, further establishing an inhibitory environment. In vitro Ab blockade revealed that multiple inhibitory receptors contribute to TCD8 impairment induced by either human metapneumovirus or influenza virus infection. In vivo blockade of T cell Ig mucin 3 signaling failed to enhance TCD8 function or reduce viral titers. However, blockade of LAG-3 in PD-1-deficient mice restored TCD8 effector functions but increased lung pathology, indicating that LAG-3 mediates lung TCD8 impairment in vivo and contributes to protection from immunopathology during viral clearance. These results demonstrate that an orchestrated network of pathways modifies lung TCD8 functionality during viral LRI, with PD-1 and LAG-3 serving prominent roles. Lung TCD8 impairment may prevent immunopathology but also contributes to recurrent lung infections.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Pulmón/inmunología , Metapneumovirus/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Paramyxoviridae/inmunología , Infecciones del Sistema Respiratorio/inmunología , Animales , Antígenos CD/metabolismo , Linfocitos T CD8-positivos/virología , Células Cultivadas , Pulmón/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mucina 3/metabolismo , Receptor de Muerte Celular Programada 1/genética , Infecciones del Sistema Respiratorio/virología , Transducción de Señal , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo , Proteína del Gen 3 de Activación de LinfocitosRESUMEN
UNLABELLED: Type I IFN signaling, which is initiated through activation of the alpha interferon receptor (IFNAR), regulates the expression of proteins that are crucial contributors to immune responses. Paramyxoviruses, including human metapneumovirus (HMPV), have evolved mechanisms to inhibit IFNAR signaling, but the specific contribution of IFNAR signaling to the control of HMPV replication, pathogenesis, and adaptive immunity is unknown. We used IFNAR-deficient (IFNAR(-/-)) mice to assess the effect of IFNAR signaling on HMPV replication and the CD8(+) T cell response. HMPV-infected IFNAR(-/-) mice had a higher peak of early viral replication but cleared the virus with kinetics similar to those of wild-type (WT) mice. However, IFNAR(-/-) mice infected with HMPV displayed less airway dysfunction and lung inflammation. CD8(+) T cells of IFNAR(-/-) mice after HMPV infection expressed levels of the inhibitory receptor programmed death 1 (PD-1) similar to those of WT mice. However, despite lower expression of inhibitory programmed death ligand 1 (PD-L1), HMPV-specific CD8(+) T cells of IFNAR(-/-) mice were more functionally impaired than those of WT mice and upregulated the inhibitory receptor Tim-3. Analysis of the antigen-presenting cell subsets in the lungs revealed that the expansion of PD-L1(low) dendritic cells (DCs), but not PD-L1(high) alveolar macrophages, was dependent on IFNAR signaling. Collectively, our results indicate a role for IFNAR signaling in the early control of HMPV replication, disease progression, and the development of an optimal adaptive immune response. Moreover, our findings suggest an IFNAR-independent mechanism of lung CD8(+) T cell impairment. IMPORTANCE: Human metapneumovirus (HMPV) is a leading cause of acute respiratory illness. CD8(+) T cells are critical for clearing viral infection, yet recent evidence shows that HMPV and other respiratory viruses induce CD8(+) T cell impairment via PD-1-PD-L1 signaling. We sought to understand the role of type I interferon (IFN) in the innate and adaptive immune responses to HMPV by using a mouse model lacking IFN signaling. Although HMPV titers were higher in the absence of type I IFN, virus was nonetheless cleared and mice were less ill, indicating that type I IFN is not required to resolve HMPV infection but contributes to pathogenesis. Further, despite lower levels of the inhibitory ligand PD-L1 in mice lacking type I IFN, CD8(+) T cells were more impaired in these mice than in WT mice. Our data suggest that specific antigen-presenting cell subsets and the inhibitory receptor Tim-3 may contribute to CD8(+) T cell impairment.
Asunto(s)
Regulación de la Expresión Génica/inmunología , Interferón Tipo I/metabolismo , Metapneumovirus/inmunología , Infecciones por Paramyxoviridae/inmunología , Transducción de Señal/inmunología , Replicación Viral/fisiología , Análisis de Varianza , Animales , Células Presentadoras de Antígenos/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Citometría de Flujo , Receptor 2 Celular del Virus de la Hepatitis A , Humanos , Interferón Tipo I/genética , Metapneumovirus/patogenicidad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oximetría , Infecciones por Paramyxoviridae/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Virales/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
Reinfections with respiratory viruses are common and cause significant clinical illness, yet precise mechanisms governing this susceptibility are ill defined. Lung Ag-specific CD8(+) T cells (T(CD8)) are impaired during acute viral lower respiratory infection by the inhibitory receptor programmed death-1 (PD-1). To determine whether PD-1 contributes to recurrent infection, we first established a model of reinfection by challenging B cell-deficient mice with human metapneumovirus (HMPV) several weeks after primary infection, and found that HMPV replicated to high titers in the lungs. A robust secondary effector lung TCD8 response was generated during reinfection, but these cells were more impaired and more highly expressed the inhibitory receptors PD-1, LAG-3, and 2B4 than primary T(CD8). In vitro blockade demonstrated that PD-1 was the dominant inhibitory receptor early after reinfection. In vivo therapeutic PD-1 blockade during HMPV reinfection restored lung T(CD8) effector functions (i.e., degranulation and cytokine production) and enhanced viral clearance. PD-1 also limited the protective efficacy of HMPV epitope-specific peptide vaccination and impaired lung T(CD8) during heterotypic influenza virus challenge infection. Our results indicate that PD-1 signaling may contribute to respiratory virus reinfection and evasion of vaccine-elicited immune responses. These results have important implications for the design of effective vaccines against respiratory viruses.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Paramyxoviridae/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Infecciones del Sistema Respiratorio/inmunología , Animales , Antígenos CD/genética , Antígenos CD/inmunología , Linfocitos B/inmunología , Linfocitos B/patología , Linfocitos T CD8-positivos/patología , Linfocitos T CD8-positivos/virología , Degranulación de la Célula/inmunología , Regulación de la Expresión Génica , Humanos , Evasión Inmune , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Recuento de Linfocitos , Metapneumovirus/inmunología , Ratones , Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Infecciones por Paramyxoviridae/genética , Infecciones por Paramyxoviridae/prevención & control , Infecciones por Paramyxoviridae/virología , Receptor de Muerte Celular Programada 1/genética , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología , Infecciones del Sistema Respiratorio/genética , Infecciones del Sistema Respiratorio/patología , Infecciones del Sistema Respiratorio/virología , Transducción de Señal , Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Carga Viral , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología , Replicación Viral , Proteína del Gen 3 de Activación de LinfocitosRESUMEN
UNLABELLED: Human metapneumovirus (HMPV) is a leading cause of respiratory disease in infants, children, and the elderly worldwide, yet no licensed vaccines exist. Live-attenuated vaccines present safety challenges, and protein subunit vaccines induce primarily antibody responses. Virus-like particles (VLPs) are an attractive alternative vaccine approach because of reduced safety concerns compared with live vaccines. We generated HMPV VLPs by expressing viral proteins in suspension-adapted human embryonic kidney epithelial (293-F) cells and found that the viral matrix (M) and fusion (F) proteins were sufficient to form VLPs. We previously reported that the VLPs resemble virus morphology and incorporate fusion-competent F protein (R. G. Cox, S. B. Livesay, M. Johnson, M. D. Ohi, and J. V. Williams, J. Virol. 86:12148-12160, 2012), which we hypothesized would elicit F-specific antibody and T cell responses. In this study, we tested whether VLP immunization could induce protective immunity to HMPV by using a mouse model. C57BL/6 mice were injected twice intraperitoneally with VLPs alone or with adjuvant and subsequently challenged with HMPV. Mice were euthanized 5 days postinfection, and virus titers, levels of neutralizing antibodies, and numbers of CD3(+) T cells were quantified. Mice immunized with VLPs mounted an F-specific antibody response and generated CD8(+) T cells recognizing an F protein-derived epitope. VLP immunization induced a neutralizing-antibody response that was enhanced by the addition of either TiterMax Gold or α-galactosylceramide adjuvant, though adjuvant reduced cellular immune responses. Two doses of VLPs conferred complete protection from HMPV replication in the lungs of mice and were not associated with a Th2-skewed cytokine response. These results suggest that nonreplicating VLPs are a promising vaccine candidate for HMPV. IMPORTANCE: Human metapneumovirus (HMPV) is a leading cause of acute respiratory infection in infants, children, and the elderly worldwide, yet no licensed vaccines exist. Live-attenuated vaccines present safety challenges, and protein subunit vaccines induce primarily antibody responses. Virus-like particles (VLPs) are an attractive alternative vaccine approach. We generated HMPV VLPs by expressing the viral matrix (M) and fusion (F) proteins in mammalian cells. We found that mice immunized with VLPs mounted an F-specific antibody response and generated CD8(+) T cells recognizing an F protein-derived epitope. VLP immunization induced a neutralizing-antibody response that was enhanced by the addition of either TiterMax Gold or α-galactosylceramide adjuvant. Two doses of VLPs conferred complete protection against HMPV replication in the lungs of mice and were not associated with a Th2-skewed cytokine response. These results suggest that nonreplicating VLPs are a promising vaccine candidate for HMPV.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Linfocitos B/inmunología , Linfocitos T CD8-positivos/inmunología , Inmunidad Celular/inmunología , Metapneumovirus/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Análisis de Varianza , Animales , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Ensayo de Immunospot Ligado a Enzimas , Citometría de Flujo , Galactosilceramidas , Células HEK293 , Humanos , Inmunohistoquímica , Pulmón/inmunología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Poloxaleno , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Vacunas de Partículas Similares a Virus/ultraestructuraRESUMEN
Human metapneumovirus (HMPV) is a major cause of respiratory disease. The role of NK cells in protection against HMPV is unclear. We show that while HMPV-infected C57BL/6 mice had higher numbers of functional lung NK cells than mock-treated mice, comparing NK cell-depleted and control mice did not reveal differences in lung viral titers, histopathology, cytokine levels, or T cell numbers or function. These data indicate that NK cells are not required for host control of HMPV.
Asunto(s)
Células Asesinas Naturales/inmunología , Metapneumovirus/fisiología , Infecciones por Paramyxoviridae/inmunología , Animales , Citocinas/inmunología , Humanos , Pulmón/inmunología , Pulmón/virología , Metapneumovirus/inmunología , Ratones , Ratones Endogámicos C57BL , Infecciones por Paramyxoviridae/virología , Linfocitos T/inmunologíaRESUMEN
Human metapneumovirus (HMPV) is an important cause of acute respiratory illnesses in children. HMPV encodes two major surface glycoproteins, fusion (F) and glycoprotein (G). The function of G has not been fully established, though it is dispensable for in vitro and in vivo replication. We analyzed 87 full-length HMPV G sequences from isolates collected over 20 years. The G sequences fell into four subgroups with a mean 63 % amino acid identity (minimum 29 %). The length of G varied from 217 to 241 residues. Structural features such as proline content and N- and O-glycosylation sites were present in all strains but quite variable between subgroups. There was minimal drift within the subgroups over 20 years. The estimated time to the most recent common ancestor was 215 years. HMPV G was conserved within lineages over 20 years, suggesting functional constraints on diversity. However, G was poorly conserved between subgroups, pointing to potentially distinct roles for G among different viral lineages.
Asunto(s)
Secuencia Conservada/genética , Glicoproteínas/genética , Metapneumovirus/genética , Proteínas Virales/genética , Secuencia de Aminoácidos , Secuencia de Bases , Preescolar , Secuencia Conservada/fisiología , Variación Genética/genética , Glicoproteínas/fisiología , Humanos , Metapneumovirus/fisiología , Infecciones por Paramyxoviridae/virología , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia , Proteínas Virales/fisiologíaRESUMEN
Human metapneumovirus (hMPV) is a recently described paramyxovirus that causes lower respiratory infections in children and adults worldwide. The hMPV fusion (F) protein is a membrane-anchored glycoprotein and major protective antigen. All hMPV F protein sequences determined to date contain an Arg-Gly-Asp (RGD) sequence, suggesting that F engages RGD-binding integrins to mediate cell entry. The divalent cation chelator EDTA, which disrupts heterodimeric integrin interactions, inhibits infectivity of hMPV but not the closely related respiratory syncytial virus (RSV), which lacks an RGD motif. Function-blocking antibodies specific for alphavbeta1 integrin inhibit infectivity of hMPV but not RSV. Transfection of nonpermissive cells with alphav or beta1 cDNAs confers hMPV infectivity, whereas reduction of alphav and beta1 integrin expression by siRNA inhibits hMPV infection. Recombinant hMPV F protein binds to cells, whereas Arg-Gly-Glu (RGE)-mutant F protein does not. These data suggest that alphavbeta1 integrin is a functional receptor for hMPV.
Asunto(s)
Metapneumovirus/patogenicidad , Receptores de Vitronectina/fisiología , Virulencia/fisiología , Animales , Anticuerpos Antivirales/inmunología , Humanos , Metapneumovirus/inmunología , ARN Interferente Pequeño , Receptores de Vitronectina/inmunología , Porcinos , Transfección , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/fisiologíaRESUMEN
Human metapneumovirus (hMPV) is a recently discovered paramyxovirus that causes upper and lower respiratory tract infections in infants, the elderly, and immunocompromised individuals worldwide. Here, we developed Venezuelan equine encephalitis virus replicon particles (VRPs) encoding hMPV fusion (F) or attachment (G) glycoproteins and evaluated the immunogenicity and protective efficacy of these vaccine candidates in mice and cotton rats. VRPs encoding hMPV F protein, when administered intranasally, induced F-specific virus-neutralizing antibodies in serum and immunoglobulin A (IgA) antibodies in secretions at the respiratory mucosa. Challenge virus replication was reduced significantly in both the upper and lower respiratory tracts following intranasal hMPV challenge in these animals. However, vaccination with hMPV G protein VRPs did not induce neutralizing antibodies or protect animals from hMPV challenge. Close examination of the histopathology of the lungs of VRP-MPV F-vaccinated animals following hMPV challenge revealed no enhancement of inflammation or mucus production. Aberrant cytokine gene expression was not detected in these animals. Together, these results represent an important first step toward the use of VRPs encoding hMPV F proteins as a prophylactic vaccine for hMPV.
Asunto(s)
Metapneumovirus/inmunología , Infecciones por Paramyxoviridae/prevención & control , Vacunas Virales/inmunología , Administración Intranasal , Animales , Anticuerpos Antivirales/sangre , Línea Celular , Virus de la Encefalitis Equina Venezolana/genética , Inmunoglobulina A/análisis , Inmunoglobulina G/sangre , Pulmón/patología , Pulmón/virología , Macaca mulatta , Ratones , Ratones Endogámicos DBA , Membrana Mucosa/inmunología , Pruebas de Neutralización , Ratas , Sistema Respiratorio/virología , Sigmodontinae , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/inmunología , Vacunas Virales/administración & dosificaciónRESUMEN
BACKGROUND: The epidemiology of human coronaviruses (HCoVs) has not been established using reverse transcription polymerase chain reaction techniques in a specimen collection that spans decades. METHODS: We used real-time RT-PCR for 3 HCoVs, HCoV 229E, OC43, and NL63, to test nasal wash specimens that had been obtained from a cohort of children <5 years of age with upper or lower respiratory infection (URI, LRI) who were comprehensively followed during the period from 1977 to 2001. Prospectively collected clinical data and archival samples were analyzed. RESULTS: HCoV was detected in 92/1854 (5.0%) of available samples with no known viral etiology of which 9% were 229E, 59% OC43, and 33% NL63. This represented 10/119 (8.4%) of LRI samples and 82/1735 (4.7%) of URI samples. HCoV was not detected every year, but occurred episodically. The recently described HCoV-NL63 was detected as early as 1981. HCoV was associated with 11.4 LRI episodes/1000 child-years <5 years of age (all in children <2 years of age) and 67.3 URI episodes/1000 child-years <5 years of age. CONCLUSIONS: HCoV-NL63 and OC43 are associated with a significant proportion of LRI in children less than 2 years of age and a substantial number of medically attended URI episodes.
Asunto(s)
Infecciones por Coronavirus/epidemiología , Coronavirus/aislamiento & purificación , Infecciones del Sistema Respiratorio/epidemiología , Preescolar , Coronavirus/genética , Infecciones por Coronavirus/virología , Femenino , Humanos , Incidencia , Lactante , Modelos Logísticos , Masculino , Estudios Prospectivos , Sistema Respiratorio/virología , Infecciones del Sistema Respiratorio/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodosRESUMEN
BACKGROUND: Human metapneumovirus (HMPV) is an important cause of acute respiratory illness in children. We examined the diversity and molecular evolution of HMPV using 85 full-length F (fusion) gene sequences collected over a 20-year period. RESULTS: The F gene sequences fell into two major groups, each with two subgroups, which exhibited a mean of 96% identity by predicted amino acid sequences. Amino acid identity within and between subgroups was higher than nucleotide identity, suggesting structural or functional constraints on F protein diversity. There was minimal progressive drift over time, and the genetic lineages were stable over the 20-year period. Several canonical amino acid differences discriminated between major subgroups, and polymorphic variations tended to cluster in discrete regions. The estimated rate of mutation was 7.12 x 10(-4) substitutions/site/year and the estimated time to most recent common HMPV ancestor was 97 years (95% likelihood range 66-194 years). Analysis suggested that HMPV diverged from avian metapneumovirus type C (AMPV-C) 269 years ago (95% likelihood range 106-382 years). CONCLUSION: HMPV F protein remains conserved over decades. HMPV appears to have diverged from AMPV-C fairly recently.
Asunto(s)
Evolución Molecular , Variación Genética , Metapneumovirus/genética , Proteínas Virales de Fusión/genética , Humanos , Metapneumovirus/química , Metapneumovirus/clasificación , Datos de Secuencia Molecular , Filogenia , Proteínas Virales de Fusión/químicaRESUMEN
Human metapneumovirus, a paramyxovirus discovered in 2001, is a major cause of lower respiratory infection in adults and children worldwide. There are no licensed vaccines or drugs for human metapneumovirus. We developed a fluorescent, cell-based medium-throughput screening assay for human metapneumovirus that captures inhibitors of all stages of the viral lifecycle except budding of progeny virus particles from the cell membrane. We optimized and validated the assay and performed a successful medium-throughput screening. A number of hits were identified, several of which were confirmed to inhibit viral replication in secondary assays. This assay offers potential to discover new antivirals for human metapneumovirus and related respiratory viruses. Compounds discovered using the medium-throughput screening may also provide useful probes of viral biology.
Asunto(s)
Antivirales/farmacología , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos/métodos , Metapneumovirus/efectos de los fármacos , Animales , Antivirales/aislamiento & purificación , Línea Celular , Humanos , Metapneumovirus/patogenicidad , Metapneumovirus/fisiología , Pruebas de Sensibilidad Microbiana , Infecciones del Sistema Respiratorio/microbiología , Pase Seriado , Replicación Viral/efectos de los fármacosRESUMEN
BACKGROUND: We sought to determine the role of human metapneumovirus in lower respiratory tract illness in previously healthy infants and children. METHODS: We tested nasal-wash specimens, obtained over a 25-year period from otherwise healthy children presenting with acute respiratory tract illness, for human metapneumovirus. RESULTS: A viral cause other than human metapneumovirus was determined for 279 of 687 visits for acute lower respiratory tract illness (41 percent) by 463 children in a population of 2009 infants and children prospectively seen from 1976 to 2001. There were 408 visits for lower respiratory tract illness by 321 children for which no cause was identified. Of these 321 children, specimens from 248 were available. Forty-nine of these 248 specimens (20 percent) contained human metapneumovirus RNA or viable virus. Thus, 20 percent of all previously virus-negative lower respiratory tract illnesses were attributable to human metapneumovirus, which means that 12 percent of all lower respiratory tract illnesses in this cohort were most likely due to this virus. The mean age of human metapneumovirus-infected children was 11.6 months, the male:female ratio was 1.8:1, 78 percent of illnesses occurred between December and April, and the hospitalization rate was 2 percent. The virus was associated with bronchiolitis in 59 percent of cases, pneumonia in 8 percent, croup in 18 percent, and an exacerbation of asthma in 14 percent. We also detected human metapneumovirus in 15 percent of samples from 261 patients with upper respiratory tract infection but in only 1 of 86 samples from asymptomatic children. CONCLUSIONS: Human metapneumovirus infection is a leading cause of respiratory tract infection in the first years of life, with a spectrum of disease similar to that of respiratory syncytial virus.
Asunto(s)
Metapneumovirus/aislamiento & purificación , Infecciones por Paramyxoviridae/virología , Infecciones del Sistema Respiratorio/virología , Adolescente , Adulto , Edad de Inicio , Asma/virología , Bronquiolitis/virología , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Metapneumovirus/genética , Infecciones por Paramyxoviridae/complicaciones , Infecciones por Paramyxoviridae/epidemiología , Filogenia , Neumonía/virología , Estudios Prospectivos , ARN Viral/análisis , Recurrencia , Infecciones del Sistema Respiratorio/complicaciones , Infecciones del Sistema Respiratorio/epidemiologíaRESUMEN
OBJECTIVE: Human metapneumovirus (hMPV) is a recently described paramyxovirus that has been associated with acute upper and lower respiratory infection (LRI) in infants and children worldwide. We previously observed that one-third of the children with hMPV-associated LRI had been diagnosed with a concomitant acute otitis media (AOM). In the current study, we sought to investigate an association between hMPV and children presenting with AOM as a primary diagnosis. METHODS: We used realtime RT-PCR for hMPV to retrospectively test 144 paired nasal wash (NW) and middle ear fluid (MEF) specimens that had been prospectively collected from children with AOM during a 3-year period from 1990-1992. RNA was extracted from archived, frozen samples and realtime RT-PCR for hMPV was performed. RESULTS: We detected hMPV in 8/144 (6%) NW and 1/144 MEF. Several of the children still tested positive for hMPV in NW 3 days later, showing persistent virus shedding. All were detected from November-May and six had bacterial co-pathogens. Two of the eight (25%) hMPV-infected children had no bacterial pathogen isolated, suggesting that hMPV may be associated with AOM as a sole pathogen. CONCLUSIONS: These data show that hMPV is associated with a proportion of AOM and thus has additional morbidity and healthcare impact related to these illnesses.
Asunto(s)
Metapneumovirus/aislamiento & purificación , Otitis Media/virología , Infecciones por Paramyxoviridae/complicaciones , Enfermedad Aguda , Preescolar , Femenino , Humanos , Lactante , Masculino , Metapneumovirus/genética , Morbilidad , Líquido del Lavado Nasal/virología , Otitis Media/epidemiología , Infecciones por Paramyxoviridae/epidemiología , ARN Viral/análisis , Estudios Retrospectivos , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
Human respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV) are major causes of illness among children, the elderly, and the immunocompromised. No vaccine has been licensed for protection against either of these viruses. We tested the ability of two Venezuelan equine encephalitis virus-based viral replicon particle (VEE-VRP) vaccines that express the hRSV or hMPV fusion (F) protein to confer protection against hRSV or hMPV in African green monkeys. Animals immunized with VEE-VRP vaccines developed RSV or MPV F-specific antibodies and serum neutralizing activity. Compared to control animals, immunized animals were better able to control viral load in the respiratory mucosa following challenge and had lower levels of viral genome in nasopharyngeal and bronchoalveolar lavage fluids. The high level of immunogenicity and protective efficacy induced by these vaccine candidates in nonhuman primates suggest that they hold promise for further development.
Asunto(s)
Infecciones por Paramyxoviridae/prevención & control , Replicón , Infecciones por Virus Sincitial Respiratorio/prevención & control , Vacunas Virales/inmunología , Alphavirus , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Líquido del Lavado Bronquioalveolar/virología , Chlorocebus aethiops , Virus de la Encefalitis Equina Venezolana , Inmunoglobulina G/sangre , Metapneumovirus , Pruebas de Neutralización , Nariz/virología , Virus Sincitial Respiratorio Humano , Proteínas Virales de Fusión/inmunologíaRESUMEN
We compared antibodies against human metapneumovirus (HMPV) and respiratory syncytial virus (RSV) in children. The antibody nadirs for both viruses were at 3 to 5 months, and the majority of children were seropositive for both by 2 years. There was no significant difference in the kinetics of maternal antibody decline or seroconversion relative to the two viruses.
Asunto(s)
Anticuerpos Antivirales/sangre , Antígenos Virales , Metapneumovirus/inmunología , Infecciones por Paramyxoviridae/epidemiología , Infecciones por Virus Sincitial Respiratorio/epidemiología , Virus Sincitial Respiratorio Humano/inmunología , Factores de Edad , Antígenos Virales/genética , Niño , Preescolar , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Infecciones por Paramyxoviridae/inmunología , Proteínas Recombinantes de Fusión/genética , Infecciones por Virus Sincitial Respiratorio/inmunología , Estudios SeroepidemiológicosRESUMEN
BACKGROUND: Human metapneumovirus (HMPV) is a paramyxovirus with multiple genetic lineages that is a leading cause of acute respiratory disease. Several RT-PCR assays have been described based on limited available sequence data. OBJECTIVES: To develop a broadly reactive real-time RT-PCR assay for HMPV that allows for a rapid, sensitive, and specific detection in a clinical or research setting. STUDY DESIGN: Three published assays for HMPV were modified based on analysis of multiple HMPV sequences obtained from GenBank. Original and modified assays were tested against prototype HMPV strains from each genetic sublineage, multiple isolates of HMPV from different years, a collection of clinical specimens, and commercial validation panels. RESULTS: A number of potential sequence mismatches with diverse HMPV strains were identified. Modifications were made to oligonucleotides to improve annealing efficiency. Primers and probes based on newer sequence data offered enhanced detection of all subgroups, especially for low titer specimens. The new primers and probe detected multiple clinical isolates of HMPV collected over a twenty-year period. The modified assay improved detection of HMPV in a panel of clinical specimens, and correctly identified HMPV samples in two commercial validation sets. CONCLUSIONS: We report a modified real-time RT-PCR assay for HMPV that detects all genetic lineages with high sensitivity.
Asunto(s)
Metapneumovirus/aislamiento & purificación , Infecciones por Paramyxoviridae/diagnóstico , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Cartilla de ADN , Humanos , Metapneumovirus/clasificación , Metapneumovirus/genética , Infecciones por Paramyxoviridae/virología , ARN Viral/análisis , ARN Viral/genética , ARN Viral/aislamiento & purificación , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/virología , Sensibilidad y EspecificidadRESUMEN
Viruses are leading causes of severe acute lower respiratory infections (LRIs). These infections evoke incomplete immunity, as individuals can be repeatedly reinfected throughout life. We report that acute viral LRI causes rapid pulmonary CD8+ cytotoxic T lymphocyte (TCD8) functional impairment via programmed death-1/programmed death ligand-1 (PD-1/PD-L1) signaling, a pathway previously associated with prolonged antigenic stimulation during chronic infections and cancer. PD-1-mediated TCD8 impairment occurred acutely in mice following infection with human metapneumovirus or influenza virus. Viral antigen was sufficient for PD-1 upregulation, but induction of PD-L1 was required for impairment. During secondary viral infection or epitope-only challenge, memory TCD8 rapidly reexpressed PD-1 and exhibited severe functional impairment. Inhibition of PD-1 signaling using monoclonal antibody blockade prevented TCD8 impairment, reduced viral titers during primary infection, and enhanced protection of immunized mice against challenge infection. Additionally, PD-1 and PD-L1 were upregulated in the lungs of patients with 2009 H1N1 influenza virus, respiratory syncytial virus, or parainfluenza virus infection. These results indicate that PD-1 mediates TCD8 functional impairment during acute viral infection and may contribute to recurrent viral LRIs. Therefore, the PD-1/PD-L1 pathway may represent a therapeutic target in the treatment of respiratory viruses.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/metabolismo , Virosis/inmunología , Virosis/metabolismo , Enfermedad Aguda , Animales , Antígenos Virales , Antígeno HLA-B7/genética , Humanos , Imidazoles , Memoria Inmunológica , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana/inmunología , Gripe Humana/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Metapneumovirus , Ratones , Ratones Transgénicos , Infecciones por Paramyxoviridae/inmunología , Infecciones por Paramyxoviridae/metabolismo , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Piridinas , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/metabolismo , Virus Sincitial Respiratorio Humano , Transducción de Señal , Regulación hacia ArribaRESUMEN
Human metapneumovirus (HMPV) is an important cause of acute respiratory illness in children. We determined the complete genome sequence of four strains of HMPV representing each of the four lineages. These sequences were compared with published HMPV genome sequences. Most genes were conserved between the genetic lineages (79.5-99.6%), though nucleotide diversity was greater than amino acid diversity, suggesting functional constraints on mutation. However, the SH and G open reading frames were more variable (mean 76.4% and 59.0% aa identity, respectively), with mostly nonsynonymous changes, suggesting selective pressure on the SH and G proteins. Gene-start regions were largely conserved between genes and viruses, while gene-end sequences were conserved between viruses but not between genes. The SH-G and G-L intergenic regions were extremely long (â¼200 nt) and have no defined function, yet were highly conserved within major groups. These findings highlight broadly conserved regions of the HMPV genome and suggest unidentified biological roles for SH and G.