Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35271040

RESUMEN

In the last decades, several swarm-based optimization algorithms have emerged in the scientific literature, followed by a massive increase in terms of their fields of application. Most of the studies and comparisons are restricted to high-level languages (such as MATLAB®) and testing methods on classical benchmark mathematical functions. Specifically, the employment of swarm-based methods for solving energy-based acoustic localization problems is still in its inception and has not yet been extensively studied. As such, the present work marks the first comprehensive study of swarm-based optimization algorithms applied to the energy-based acoustic localization problem. To this end, a total of 10 different algorithms were subjected to an extensive set of simulations with the following aims: (1) to compare the algorithms' convergence performance and recognize novel, promising methods for solving the problem of interest; (2) to validate the importance (in convergence speed) of an intelligent swarm initialization for any swarm-based algorithm; (3) to analyze the methods' time efficiency when implemented in low-level languages and when executed on embedded processors. The obtained results disclose the high potential of some of the considered swarm-based optimization algorithms for the problem under study, showing that these methods can accurately locate acoustic sources with low latency and bandwidth requirements, making them highly attractive for edge computing paradigms.

2.
Sensors (Basel) ; 21(5)2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33802341

RESUMEN

This work addresses the problem of target localization in three-dimensional wireless sensor networks (WSNs). The proposed algorithm is based on a hybrid system that employs angle of arrival (AOA) and received signal strength (RSS) measurements, where the target's transmit power is considered as an unknown parameter. Although both cases of a known and unknown target's transmit power have been addressed in the literature, most of the existing approaches for unknown transmit power are either carried out recursively, or require a high computational cost. This results in an increased execution time of these algorithms, which we avoid in this work by proposing a single-iteration solution with moderate computational complexity. By exploiting the measurement models, a non-convex least squares (LS) estimator is derived first. Then, to tackle its nonconvexity, we resort to second-order cone programming (SOCP) relaxation techniques to transform the non-convex estimator into a convex one. Additionally, to make the estimator tighter, we exploit the angle between two vectors by using the definition of their inner product, which arises naturally from the derivation steps that are taken. The proposed method not only matches the performance of a computationally more complex state-of-the-art method, but it outperforms it for small N. This result is of a significant value in practice, since one desires to localize the target using the least number of anchor nodes as possible due to network costs.

3.
Sensors (Basel) ; 19(2)2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30634500

RESUMEN

This work addresses the problem of target localization in adverse non-line-of-sight (NLOS) environments by using received signal strength (RSS) and time of arrival (TOA) measurements. It is inspired by a recently published work in which authors discuss about a critical distance below and above which employing combined RSS-TOA measurements is inferior to employing RSS-only and TOA-only measurements, respectively. Here, we revise state-of-the-art estimators for the considered target localization problem and study their performance against their counterparts that employ each individual measurement exclusively. It is shown that the hybrid approach is not the best one by default. Thus, we propose a simple heuristic approach to choose the best measurement for each link, and we show that it can enhance the performance of an estimator. The new approach implicitly relies on the concept of the critical distance, but does not assume certain link parameters as given. Our simulations corroborate with findings available in the literature for line-of-sight (LOS) to a certain extent, but they indicate that more work is required for NLOS environments. Moreover, they show that the heuristic approach works well, matching or even improving the performance of the best fixed choice in all considered scenarios.

4.
Sensors (Basel) ; 18(4)2018 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-29671832

RESUMEN

This work revises existing solutions for a problem of target localization in wireless sensor networks (WSNs), utilizing integrated measurements, namely received signal strength (RSS) and angle of arrival (AoA). The problem of RSS/AoA-based target localization became very popular in the research community recently, owing to its great applicability potential and relatively low implementation cost. Therefore, here, a comprehensive study of the state-of-the-art (SoA) solutions and their detailed analysis is presented. The beginning of this work starts by considering the SoA approaches based on convex relaxation techniques (more computationally complex in general), and it goes through other (less computationally complex) approaches, as well, such as the ones based on the generalized trust region sub-problems framework and linear least squares. Furthermore, a detailed analysis of the computational complexity of each solution is reviewed. Furthermore, an extensive set of simulation results is presented. Finally, the main conclusions are summarized, and a set of future aspects and trends that might be interesting for future research in this area is identified.

5.
Sensors (Basel) ; 18(9)2018 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-30158442

RESUMEN

This work addresses the energy-based source localization problem in wireless sensors networks. Instead of circumventing the maximum likelihood (ML) problem by applying convex relaxations and approximations, we approach it directly by the use of metaheuristics. To the best of our knowledge, this is the first time that metaheuristics are applied to this type of problem. More specifically, an elephant herding optimization (EHO) algorithm is applied. Through extensive simulations, the key parameters of the EHO algorithm are optimized such that they match the energy decay model between two sensor nodes. A detailed analysis of the computational complexity is presented, as well as a performance comparison between the proposed algorithm and existing non-metaheuristic ones. Simulation results show that the new approach significantly outperforms existing solutions in noisy environments, encouraging further improvement and testing of metaheuristic methods.

6.
Sensors (Basel) ; 17(11)2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29160797

RESUMEN

This work addresses the problem of tracking a signal-emitting mobile target in wireless sensor networks (WSNs) with navigated mobile sensors. The sensors are properly equipped to acquire received signal strength (RSS) and angle of arrival (AoA) measurements from the received signal, while the target transmit power is assumed not known. We start by showing how to linearize the highly non-linear measurement model. Then, by employing a Bayesian approach, we combine the linearized observation model with prior knowledge extracted from the state transition model. Based on the maximum a posteriori (MAP) principle and the Kalman filtering (KF) framework, we propose new MAP and KF algorithms, respectively. We also propose a simple and efficient mobile sensor navigation procedure, which allows us to further enhance the estimation accuracy of our algorithms with a reduced number of sensors. Model flaws, which result in imperfect knowledge about the path loss exponent (PLE) and the true mobile sensors' locations, are taken into consideration. We have carried out an extensive simulation study, and our results confirm the superiority of the proposed algorithms, as well as the effectiveness of the proposed navigation routine.

7.
Sensors (Basel) ; 14(10): 18410-32, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25275350

RESUMEN

In this paper, we propose a new approach based on convex optimization to address the received signal strength (RSS)-based cooperative localization problem in wireless sensor networks (WSNs). By using iterative procedures and measurements between two adjacent nodes in the network exclusively, each target node determines its own position locally. The localization problem is formulated using the maximum likelihood (ML) criterion, since ML-based solutions have the property of being asymptotically efficient. To overcome the non-convexity of the ML optimization problem, we employ the appropriate convex relaxation technique leading to second-order cone programming (SOCP). Additionally, a simple heuristic approach for improving the convergence of the proposed scheme for the case when the transmit power is known is introduced. Furthermore, we provide details about the computational complexity and energy consumption of the considered approaches. Our simulation results show that the proposed approach outperforms the existing ones in terms of the estimation accuracy for more than 1:5 m. Moreover, the new approach requires a lower number of iterations to converge, and consequently, it is likely to preserve energy in all presented scenarios, in comparison to the state-of-the-art approaches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA