RESUMEN
In recent years, synthetic opioids have emerged as a predominant cause of drug-overdose-related fatalities, causing the "opioid crisis." To design safer therapeutic agents, we accidentally discovered µ-opioid receptor (MOR) antagonists based on fentanyl with a relatively uncomplicated chemical composition that potentiates structural modifications. Here, we showed the development of novel atropisomeric fentanyl analogues that exhibit more potent antagonistic activity against MOR than naloxone, a morphinan MOR antagonist. Derivatives displaying stable axial chirality were synthesized based on the amide structure of fentanyl. The aS- and aR-enantiomers exerted antagonistic and agonistic effects on the MOR, respectively, and each atropisomer interacted with the MOR by assuming a distinct binding mode through molecular docking. These findings suggest that introducing atropisomerism into fentanyl may serve as a key feature in the molecular design of future MOR antagonists to help mitigate the opioid crisis.