Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Science ; 265(5181): 2082-5, 1994 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-8091230

RESUMEN

The RAD1 and RAD10 genes of Saccharomyces cerevisiae are required for both nucleotide excision repair and certain mitotic recombination events. Here, model recombination and repair intermediates were used to show that Rad1-Rad10-mediated cleavage occurs at duplex-single-strand junctions. Moreover, cleavage occurs only on the strand containing the 3' single-stranded tail. Thus, both biochemical and genetic evidence indicate a role for the Rad1-Rad10 complex in the cleavage of specific recombination intermediates. Furthermore, these data suggest that Rad1-Rad10 endonuclease incises DNA 5' to damaged bases during nucleotide excision repair.


Asunto(s)
Reparación del ADN , ADN de Hongos/metabolismo , Proteínas de Unión al ADN , Endodesoxirribonucleasas/metabolismo , Endonucleasas , Proteínas Fúngicas/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Secuencia de Bases , Enzimas Reparadoras del ADN , ADN de Hongos/genética , ADN de Cadena Simple/metabolismo , Datos de Secuencia Molecular , Oligodesoxirribonucleótidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Endonucleasas Específicas del ADN y ARN con un Solo Filamento
2.
Curr Biol ; 10(15): 919-22, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-10959839

RESUMEN

DNA ligase I belongs to a family of proteins that bind to proliferating cell nuclear antigen (PCNA) via a conserved 8-amino-acid motif [1]. Here we examine the biological significance of this interaction. Inactivation of the PCNA-binding site of DNA ligase I had no effect on its catalytic activity or its interaction with DNA polymerase beta. In contrast, the loss of PCNA binding severely compromised the ability of DNA ligase I to join Okazaki fragments. Thus, the interaction between PCNA and DNA ligase I is not only critical for the subnuclear targeting of the ligase, but also for coordination of the molecular transactions that occur during lagging-strand synthesis. A functional PCNA-binding site was also required for the ligase to complement hypersensitivity of the DNA ligase I mutant cell line 46BR.1G1 to monofunctional alkylating agents, indicating that a cytotoxic lesion is repaired by a PCNA-dependent DNA repair pathway. Extracts from 46BR.1G1 cells were defective in long-patch, but not short-patch, base-excision repair (BER). Our results show that the interaction between PCNA and DNA ligase I has a key role in long-patch BER and provide the first evidence for the biological significance of this repair mechanism.


Asunto(s)
ADN Ligasas/metabolismo , Reparación del ADN , ADN/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Secuencias de Aminoácidos , Animales , Sitios de Unión , Línea Celular , ADN Ligasa (ATP) , ADN Ligasas/química , ADN Ligasas/genética , Humanos , Mutagénesis Sitio-Dirigida , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/genética , Unión Proteica
3.
Mol Cell Biol ; 17(2): 989-98, 1997 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-9001252

RESUMEN

Three mammalian genes encoding DNA ligases have been identified. However, the role of each of these enzymes in mammalian DNA metabolism has not been established. In this study, we show that two forms of mammalian DNA ligase III, alpha and beta, are produced by a conserved tissue-specific alternative splicing mechanism involving exons encoding the C termini of the polypeptides. DNA ligase III-alpha cDNA, which encodes a 103-kDa polypeptide, is expressed in all tissues and cells, whereas DNA ligase III-beta cDNA, which encodes a 96-kDa polypeptide, is expressed only in the testis. During male germ cell differentiation, elevated expression of DNA ligase III-beta mRNA is restricted, beginning only in the latter stages of meiotic prophase and ending in the round spermatid stage. In 96-kDa DNA ligase III-beta, the C-terminal 77 amino acids of DNA ligase III-alpha are replaced by a different 17- to 18-amino acid sequence. As reported previously, the 103-kDa DNA ligase III-alpha interacts with the DNA strand break repair protein encoded by the human XRCC1 gene. In contrast, the 96-kDa DNA ligase III-beta does not interact with XRCC1, indicating that DNA ligase III-beta may play a role in cellular functions distinct from the DNA repair pathways involving the DNA ligase III-alpha x XRCC1 complex. The distinct biochemical properties of DNA ligase III-beta, in combination with the tissue- and cell-type-specific expression of DNA ligase III-beta mRNA, suggest that this form of DNA ligase III is specifically involved in the completion of homologous recombination events that occur during meiotic prophase.


Asunto(s)
Empalme Alternativo , ADN Ligasas/genética , Meiosis/genética , Espermatocitos/enzimología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Diferenciación Celular , Clonación Molecular , ADN Ligasa (ATP) , ADN Ligasas/análisis , ADN Ligasas/metabolismo , Reparación del ADN , ADN Complementario , Proteínas de Unión al ADN/metabolismo , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Especificidad de Órganos , Proteínas de Unión a Poli-ADP-Ribosa , ARN Mensajero/análisis , Recombinación Genética , Mapeo Restrictivo , Análisis de Secuencia de ADN , Espermatocitos/citología , Testículo/crecimiento & desarrollo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X , Proteínas de Xenopus
4.
Mol Cell Biol ; 15(10): 5412-22, 1995 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-7565692

RESUMEN

Three biochemically distinct DNA ligase activities have been identified in mammalian cell extracts. We have recently purified DNA ligase II and DNA ligase III to near homogeneity from bovine liver and testis tissue, respectively. Amino acid sequencing studies indicated that these enzymes are encoded by the same gene. In the present study, human and murine cDNA clones encoding DNA ligase III were isolated with probes based on the peptide sequences. The human DNA ligase III cDNA encodes a polypeptide of 862 amino acids, whose sequence is more closely related to those of the DNA ligases encoded by poxviruses than to replicative DNA ligases, such as human DNA ligase I. In vitro transcription and translation of the cDNA produced a catalytically active DNA ligase similar in size and substrate specificity to the purified bovine enzyme. The DNA ligase III gene was localized to human chromosome 17, which eliminated this gene as a candidate for the cancer-prone disease Bloom syndrome that is associated with DNA joining abnormalities. DNA ligase III is ubiquitously expressed at low levels, except in the testes, in which the steady-state levels of DNA ligase III mRNA are at least 10-fold higher than those detected in other tissues and cells. Since DNA ligase I mRNA is also present at high levels in the testes, we examined the expression of the DNA ligase genes during spermatogenesis. DNA ligase I mRNA expression correlated with the contribution of proliferating spermatogonia cells to the testes, in agreement with the previously defined role of this enzyme in DNA replication. In contrast, elevated levels of DNA ligase III mRNA were observed in primary spermatocytes undergoing recombination prior to the first meiotic division. Therefore, we suggest that DNA ligase III seals DNA strand breaks that arise during the process of meiotic recombination in germ cells and as a consequence of DNA damage in somatic cells.


Asunto(s)
Cromosomas Humanos Par 17 , ADN Ligasas/genética , Recombinación Genética/fisiología , Espermatocitos/enzimología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Bovinos , Mapeo Cromosómico , Clonación Molecular , Daño del ADN , ADN Ligasa (ATP) , ADN Ligasas/biosíntesis , ADN Ligasas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Meiosis/genética , Ratones , Datos de Secuencia Molecular , Especificidad de Órganos , Proteínas de Unión a Poli-ADP-Ribosa , ARN Mensajero/análisis , Alineación de Secuencia , Especificidad por Sustrato , Testículo/enzimología , Testículo/crecimiento & desarrollo , Proteínas de Xenopus
5.
Artículo en Inglés | MEDLINE | ID: mdl-11554294

RESUMEN

Three mammalian genes encoding DNA ligases--LIG1, LIG3, and LIG4--have been identified. Genetic, biochemical, and cell biology studies indicate that the products of each of these genes play a unique role in mammalian DNA metabolism. Interestingly, cell lines deficient in either DNA ligase I (46BR.1G1) or DNA ligase III (EM9) are sensitive to simple alkylating agents. One interpretation of these observations is that DNA ligases I and III participate in functionally distinct base excision repair (BER) subpathways. In support of this idea, extracts from both DNA ligase-deficient cell lines are defective in catalyzing BER in vitro and both DNA ligases interact with other BER proteins. DNA ligase I interacts directly with proliferating cell nuclear antigen (PCNA) and DNA polymerase beta (Pol beta), linking this enzyme with both short-patch and long-patch BER. In somatic cells, DNA ligase III alpha forms a stable complex with the DNA repair protein Xrcc1. Although Xrcc1 has no catalytic activity, it also interacts with Pol beta and poly(ADP-ribose) polymerase (PARP), linking DNA ligase III alpha with BER and single-strand break repair, respectively. Biochemical studies suggest that the majority of short-patch base excision repair events are completed by the DNA ligase III alpha/Xrcc1 complex. Although there is compelling evidence for the participation of PARP in the repair of DNA single-strand breaks, the role of PARP in BER has not been established.


Asunto(s)
ADN Ligasas/fisiología , Reparación del ADN/fisiología , Isoenzimas/fisiología , Animales , Células CHO , Línea Celular , Clonación Molecular , Cricetinae , Cricetulus , Daño del ADN , ADN Ligasas/deficiencia , ADN Ligasas/genética , Reparación del ADN/genética , ADN Complementario/genética , Proteínas de Unión al ADN/metabolismo , Fibroblastos , Genes , Prueba de Complementación Genética , Humanos , Isoenzimas/deficiencia , Isoenzimas/genética , Sustancias Macromoleculares , Mamíferos/genética , Mamíferos/metabolismo , Fenotipo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
6.
Mutat Res ; 407(1): 1-9, 1998 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-9539976

RESUMEN

DNA joining events are required for the completion of DNA replication, DNA excision repair and genetic recombination. Five DNA ligase activities, I-V, have been purified from mammalian cell extracts and three mammalian LIG genes, LIG1 LIG3 and LIG4, have been cloned. During DNA replication, the joining of Okazaki fragments by the LIG1 gene product appears to be mediated by an interaction with proliferating cell nuclear antigen (PCNA). This interaction may also occur during the completion of mismatch, nucleotide excision and base excision repair (BER). In addition, DNA ligase I participates in a second BER pathway that is carried out by a multiprotein complex in which DNA ligase I interacts directly with DNA polymerase beta. DNA ligase III alpha and DNA ligase III beta, which are generated by alternative splicing of the LIG3 gene, can be distinguished by their ability to bind to the DNA repair protein, XRCC1. The interaction between DNA ligase III alpha and XRCC1, which occurs through BRCT motifs in the C-termini of these polypeptides, implicates this isoform of DNA ligase III in the repair of DNA single-strand breaks and BER. DNA ligase II appears to be a proteolytic fragment of DNA ligase III alpha. The restricted expression of DNA ligase III beta suggests that this enzyme may function in the completion of meiotic recombination or in a postmeiosis DNA repair pathway. Complex formation between DNA ligase IV and the DNA repair protein XRCC4 involves the C-terminal region of DNA ligase IV, which contains two BRCT motifs. This interaction, which stimulates DNA joining activity, implies that DNA ligase IV functions in V(D)J recombination and non-homologous end-joining of DNA double-strand breaks. At the present time, it is not known whether DNA ligase V is derived from one of the known mammalian LIG genes or is the product of a novel gene.


Asunto(s)
ADN Ligasas/química , ADN Ligasas/fisiología , Reparación del ADN , Animales , Clonación Molecular , ADN Ligasa (ATP) , ADN Ligasas/genética , Replicación del ADN , Mamíferos , Antígeno Nuclear de Célula en Proliferación/metabolismo
7.
Mutat Res ; 236(2-3): 277-87, 1990.
Artículo en Inglés | MEDLINE | ID: mdl-2204827

RESUMEN

Recent studies on eukaryotic DNA ligases are briefly reviewed. The two distinguishable enzymes from mammalian cells, DNA ligase I and DNA ligase II, have been purified to homogeneity and characterized biochemically. Two distinct DNA ligases have also been identified in Drosophila melanogaster embryos. The genes encoding DNA ligases from Schizosaccharomyces pombe, Saccharomyces cerevisiae and vaccinia virus have been cloned and sequenced. These 3 proteins exhibit about 30% amino acid sequence identity; the 2 yeast enzymes share 53% amino acid sequence identity or conserved changes. Altered DNA ligase I activity has been found in cell lines from patients with Bloom's syndrome, although a causal link between the enzyme deficiency and the disease has not yet been proven.


Asunto(s)
ADN Ligasas/metabolismo , Polinucleótido Ligasas/metabolismo , Secuencia de Aminoácidos , Animales , Síndrome de Bloom/enzimología , ADN Ligasas/aislamiento & purificación , ADN Ligasas/fisiología , Replicación del ADN , Humanos , Mamíferos , Datos de Secuencia Molecular , Saccharomyces/enzimología , Homología de Secuencia de Ácido Nucleico , Virus Vaccinia/genética
8.
Mutat Res ; 408(3): 183-94, 1998 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-9806417

RESUMEN

Nucleotide excision repair (NER) of DNA in the yeast Saccharomyces cerevisiae and in human cells has been shown to be a biochemically complex process involving multiple gene products. In yeast, the involvement of the DNA replication accessory proteins, replication protein A (RPA1) and proliferating cell nuclear antigen (PCNA) in NER has not been demonstrated genetically. In this study we have generated temperature-degradable rfa1 and pcna mutants and show that these mutants are defective in NER in vitro under conditions that promote degradation of the RFA1 and PCNA gene products. We also demonstrate a physical interaction between RPA1 protein and subunits of the RNA polymerase II basal transcription factor IIH (TFIIH).


Asunto(s)
Reparación del ADN/fisiología , Proteínas de Unión al ADN/fisiología , Genes Esenciales , Antígeno Nuclear de Célula en Proliferación/fisiología , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Factores Asociados con la Proteína de Unión a TATA , Factor de Transcripción TFIID , Factores de Transcripción TFII , Replicación del ADN , ADN de Hongos/biosíntesis , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Humanos , Sustancias Macromoleculares , Mutagénesis , Antígeno Nuclear de Célula en Proliferación/genética , Unión Proteica , ARN Polimerasa II/metabolismo , Proteína de Replicación A , Temperatura , Factor de Transcripción TFIIH , Factores de Transcripción/metabolismo , Rayos Ultravioleta
9.
Oncogene ; 32(14): 1784-93, 2013 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-22641215

RESUMEN

Resistance to imatinib (IM) and other tyrosine kinase inhibitors (TKI)s is an increasing problem in leukemias caused by expression of BCR-ABL1. As chronic myeloid leukemia (CML) cell lines expressing BCR-ABL1 utilize an alternative non-homologous end-joining pathway (ALT NHEJ) to repair DNA double-strand breaks (DSB)s, we asked whether this repair pathway is a novel therapeutic target in TKI-resistant disease. Notably, the steady state levels of two ALT NHEJ proteins, poly-(ADP-ribose) polymerase 1 (PARP1) and DNA ligase IIIα, were increased in the BCR-ABL1-positive CML cell line K562 and, to a greater extent, in its imatinib-resistant (IMR) derivative. Incubation of these cell lines with a combination of DNA ligase and PARP inhibitors inhibited ALT NHEJ and selectively decreased survival with the effect being greater in the IMR derivative. Similar results were obtained with TKI-resistant derivatives of two hematopoietic cell lines that had been engineered to stably express BCR-ABL1. Together our results show that the sensitivity of cell lines expressing BCR-ABL1 to the combination of DNA ligase and PARP inhibitors correlates with the steady state levels of PARP1 and DNA ligase IIIα, and ALT NHEJ activity. Importantly, analysis of clinical samples from CML patients confirmed that the expression levels of PARP1 and DNA ligase IIIα correlated with the sensitivity to the DNA repair inhibitor combination. Thus, the expression levels of PARP1 and DNA ligase IIIα serve as biomarkers to identify a subgroup of CML patients who may be candidates for therapies that target the ALT NHEJ pathway when treatment with TKIs has failed.


Asunto(s)
Benzamidas/farmacología , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , ADN Ligasas/antagonistas & inhibidores , Resistencia a Antineoplásicos/efectos de los fármacos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Pirimidinas/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptosis/efectos de los fármacos , Western Blotting , Proliferación Celular/efectos de los fármacos , Hibridación Genómica Comparativa , ADN Ligasa (ATP) , ADN Ligasas/genética , ADN Ligasas/metabolismo , Inhibidores Enzimáticos/farmacología , Técnica del Anticuerpo Fluorescente , Proteínas de Fusión bcr-abl/metabolismo , Humanos , Mesilato de Imatinib , Técnicas para Inmunoenzimas , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa , Inhibidores de Proteínas Quinasas/farmacología , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas , Proteínas de Xenopus
11.
Bioessays ; 19(10): 893-901, 1997 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9363683

RESUMEN

DNA joining enzymes play an essential role in the maintenance of genomic integrity and stability. Three mammalian genes encoding DNA ligases, LIG1, LIG3 and LIG4, have been identified. Since DNA ligase II appears to be derived from DNA ligase III by a proteolytic mechanism, the three LIG genes can account for the four biochemically distinct DNA ligase activities, DNA ligases I, II, III and IV, that have been purified from mammalian cell extracts. It is probable that the specific cellular roles of these enzymes are determined by the proteins with which they interact. The specific involvement of DNA ligase I in DNA replication is mediated by the non-catalytic amino-terminal domain of this enzyme. Furthermore, DNA ligase I participates in DNA base excision repair as a component of a multiprotein complex. Two forms of DNA ligase III are produced by an alternative splicing mechanism. The ubiqitously expressed DNA ligase III-alpha forms a complex with the DNA single-strand break repair protein XRCC1. In contrast, DNA ligase III-beta, which does not interact with XRCC1, is only expressed in male meiotic germ cells, suggesting a role for this isoform in meiotic recombination. At present, there is very little information about the cellular functions of DNA ligase IV.


Asunto(s)
ADN Ligasas/genética , ADN Ligasas/metabolismo , Empalme Alternativo , Animales , ADN Ligasa (ATP) , Reparación del ADN , Humanos , Masculino , Mamíferos , Modelos Genéticos , Filogenia , Espermatozoides/fisiología
12.
Nucleic Acids Res ; 14(24): 9579-93, 1986 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-3027656

RESUMEN

A nuclease was purified from mitochondria of the mouse plasmacytoma cell line, MCP-11 which acts on single-stranded DNA endonucleolytically and appears to have no activity upon native DNA. It degrades unordered RNA somewhat more effectively than it does DNA. The enzyme activity and the major detectable polypeptide migrate to a position corresponding to an Mr of 37,400 on denaturing polyacrylamide gels; in its native form the activity has an S value of 4.7, which corresponds to a molecular weight of roughly 73,000. The single-strand DNase activity has a pH optimum near 7.5, requires a divalent cation and is inhibited by EDTA, phosphate, KCl and NaCl. The enzyme is remarkably similar to fungal mitochondrial enzymes whose absence in various mutants correlates with defective DNA repair and recombination. It reacts weakly with antibody to a form of such an enzyme from Neurospora crassa.


Asunto(s)
Endonucleasas/aislamiento & purificación , Mitocondrias/enzimología , Animales , Anticuerpos , Complejo Antígeno-Anticuerpo , Cationes Bivalentes , Línea Celular , Reacciones Cruzadas , Endonucleasas/metabolismo , Cinética , Ratones , Peso Molecular , Neurospora crassa/enzimología , Plasmacitoma/enzimología , Especificidad por Sustrato
13.
J Biol Chem ; 272(23): 14990-5, 1997 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-9169473

RESUMEN

Nicotinic acetylcholine receptors constitute a multigene family (alpha2-alpha9, beta2-beta4) expressed in discrete temporal and spatial patterns within the nervous system. The receptors are critical for proper signal transmission between neurons and their targets. The molecular mechanisms underlying receptor gene expression have not been completely elucidated but clearly involve regulation at the level of transcription. We previously identified a novel 19-base pair (bp) transcriptional regulatory element in the promoter region of the rat beta4 subunit gene. This 19-bp element interacts specifically with DNA-binding proteins enriched in nuclear extracts prepared from adult rat brain. Using a combination of cellulose-phosphate, DNA-cellulose, and DNA sequence-specific affinity chromatographies, we purified the 19-bp element binding activity approximately 19,000-fold. Analysis by denaturing gel electrophoresis revealed the presence of four polypeptides in the most purified fraction, ranging in molecular masses between 31 and 114 kDa. Peptide sequence analysis revealed that one of the polypeptides is the bovine homologue of the transcriptional regulatory factor, Puralpha. Electrophoretic mobility shift assays indicated that Puralpha interacts directly and specifically with the 19-bp element. In addition, mobility shift assays using an anti-Puralpha monoclonal antibody revealed the presence of Puralpha, or an immunologically related protein, in nuclear extracts prepared from brain tissue. We hypothesize that the interaction between Puralpha and the 19-bp element is critical for proper expression of the beta4 subunit gene.


Asunto(s)
Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Proteínas de Unión al ADN/metabolismo , Regiones Promotoras Genéticas , Receptores Nicotínicos/biosíntesis , Transcripción Genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Bovinos , Núcleo Celular/metabolismo , Cromatografía de Afinidad , Cromatografía por Intercambio Iónico , Secuencia Conservada , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/aislamiento & purificación , Sustancias Macromoleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Ratas , Receptores Nicotínicos/genética , Proteínas Recombinantes de Fusión/biosíntesis , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción
14.
Biochemistry ; 31(47): 11762-71, 1992 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-1445910

RESUMEN

Genetic studies have previously demonstrated that the Saccharomyces cerevisiae CDC9 gene product, which is functionally homologous to mammalian DNA ligase I, is required for DNA replication and is also involved in DNA repair and genetic recombination. In the present study we have purified the yeast enzyme. When measured under denaturing conditions, Cdc9 protein has a polypeptide molecular mass of 87 kDa. The native form of the enzyme is an 80-kDa asymmetric monomer. Both estimates are in good agreement with the M(r) = 84,406 predicted from the translated sequence of the CDC9 gene. Cdc9 DNA ligase acts via the same basic reaction mechanism employed by all known ATP-dependent DNA ligases. The catalytic functions reside in a 70-kDa C-terminal domain that is conserved in mammalian DNA ligase I and in Cdc17 DNA ligase from Schizosaccharomyces pombe. The ATP analog ATP alpha S inhibits the ligation reaction, although Cdc9 protein does form an enzyme-thioadenylate intermediate. Since Cdc9 DNA ligase exhibited the same substrate specificity as mammalian DNA ligase I, this enzyme can be considered to be the DNA ligase I of S. cerevisiae. There is genetic evidence suggesting that DNA ligase may be directly involved in error-prone DNA repair. We examined the ability of Cdc9 DNA ligase to join nicks with mismatches at the termini. Mismatches at the 5' termini of nicks had very little effect on ligation, whereas mismatches opposite a purine at 3' termini inhibited DNA ligation. The joining of DNA molecules with mismatched termini by DNA ligase may be responsible for the generation of mutations.


Asunto(s)
ADN Ligasas/metabolismo , Saccharomyces cerevisiae/enzimología , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Secuencia de Aminoácidos , Fenómenos Químicos , Química Física , ADN/química , ADN/metabolismo , ADN Ligasa (ATP) , ADN Ligasas/química , ADN Ligasas/aislamiento & purificación , Datos de Secuencia Molecular , Peso Molecular , Especificidad por Sustrato , Tionucleótidos/metabolismo , Tionucleótidos/farmacología
15.
J Biol Chem ; 263(25): 12532-7, 1988 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-2457585

RESUMEN

Endonuclease activity which specifically cleaves baseless (apurinic/apyrimidinic (AP] sites in supercoiled DNA has been purified from mitochondria of the mouse plasmacytoma cell line, MPC-11. Two variant forms separate upon purification; these have small but reproducible differences in catalytic and chromatographic properties, but similar physical properties. Both have a sedimentation coefficient of 4.0, corresponding to a molecular weight of 61,000 (assuming a globular configuration) and a peptide molecular weight of about 65,000 as determined by immunoblot analysis with antiserum raised against the major AP endonuclease from HeLa cells. Thus mitochondrial AP endonuclease appears to be a monomer of about 65 kDa, making it distinguishable from the major AP endonuclease of MPC-11 cells which, like those of other mammalian cells, appears to be a monomer of about 41 kDa. A possible 82-kDa precursor form was also detected by immunoblot analysis of a crude mitochondrial fraction. Mitochondrial AP endonuclease activity is greatly stimulated by divalent cations, has a pH optimum between 6.5 and 8.5, and cleaves the AP site by a class II mechanism to generate a 3'-OH nucleotide residue. These properties resemble those of the major mammalian AP endonucleases but, unlike those enzymes, mitochondrial AP endonuclease activity is neither inhibited by adenine or NAD+ nor stimulated by Triton X-100. Since the mitochondrial activity generates active primer termini for DNA synthesis, it could function in base excision DNA repair; alternatively, it might have a role in eliminating damaged mitochondrial genomes from the gene pool.


Asunto(s)
Ácido Apurínico/metabolismo , ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Mitocondrias/enzimología , Polinucleótidos/metabolismo , Cationes Bivalentes , Centrifugación por Gradiente de Densidad , ADN/biosíntesis , ADN Superhelicoidal/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Desoxirribonucleasa IV (Fago T4-Inducido) , Electroforesis en Gel de Poliacrilamida , Endodesoxirribonucleasas/aislamiento & purificación , Concentración de Iones de Hidrógeno , Técnicas de Inmunoadsorción , Peso Molecular , Plasmacitoma , Especificidad por Sustrato , Células Tumorales Cultivadas
16.
Nucleic Acids Res ; 21(23): 5425-30, 1993 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-8265359

RESUMEN

The phenotypes of cultured cell lines established from individuals with Bloom syndrome (BLM), including an elevated spontaneous frequency of sister chromatid exchanges (SCEs), are consistent with a defect in DNA joining. We have investigated the levels of DNA ligase I and DNA ligase III in an SV40-transformed control and BLM fibroblast cell line, as well as clonal derivatives of the BLM cell line complemented or not for the elevated SCE phenotype. No differences in either DNA ligase I or DNA ligase III were detected in extracts from these cell lines. Furthermore, the data indicate that in dividing cultures of SV40-transformed fibroblasts, DNA ligase III contributes > 85% of high molecular weight DNA joining activity. This observation contrasts with previous studies in which DNA ligase I was reported to be the major DNA joining activity in extracts from proliferating mammalian cells.


Asunto(s)
Síndrome de Bloom/enzimología , ADN Ligasas/metabolismo , Western Blotting , Transformación Celular Viral , Cromatografía , ADN Ligasa (ATP) , ADN Ligasas/aislamiento & purificación , Humanos , Peso Molecular , Proteínas de Unión a Poli-ADP-Ribosa , Virus 40 de los Simios , Intercambio de Cromátides Hermanas , Proteínas de Xenopus
17.
J Biol Chem ; 265(21): 12618-22, 1990 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-2197279

RESUMEN

Mammalian DNA ligase I is presumed to act in DNA replication. Rabbit antibodies against the homogeneous enzyme from calf thymus inhibited DNA ligase I activity and consistently recognized a single polypeptide of 125 kDa when cells from an established bovine kidney cell line (MDBK) were lysed rapidly by a variety of procedures and subjected to immunoblotting analysis. After biosynthetic labeling of MDBK cells with [35S]methionine, immunoprecipitation experiments revealed a polypeptide of 125 kDa that did not appear when purified calf thymus DNA ligase I was used in competition. A 125-kDa polypeptide was adenylated when immunoprecipitated protein from MDBK cells was incubated with [alpha-32P]ATP. Thus, the apparent molecular mass of the initial translation product is identical or nearly so to that of the purified enzyme. The half-life of the protein is 7 h as determined by pulse-chase experiments in asynchronous MDBK cells. Immunocytochemistry and indirect immunofluorescence experiments showed that DNA ligase I is localized to cell nuclei.


Asunto(s)
ADN Ligasas/metabolismo , Polinucleótido Ligasas/metabolismo , Adenosina Monofosfato/metabolismo , Animales , Western Blotting , Bovinos , Compartimento Celular , Núcleo Celular/enzimología , Células Cultivadas/enzimología , ADN Ligasa (ATP) , ADN Ligasas/biosíntesis , Técnica del Anticuerpo Fluorescente , Peso Molecular , Pruebas de Precipitina
18.
J Biol Chem ; 275(34): 26196-205, 2000 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-10854421

RESUMEN

The DNA-dependent protein kinase (DNA-PK), consisting of Ku and the DNA-PK catalytic subunit (DNA-PKcs), and the DNA ligase IV-XRCC4 complex function together in the repair of DNA double-strand breaks by non-homologous end joining. These protein complexes are also required for the completion of V(D)J recombination events in immune cells. Here we demonstrate that the DNA ligase IV-XRCC4 complex binds specifically to the ends of duplex DNA molecules and can act as a bridging factor, linking together duplex DNA molecules with complementary but non-ligatable ends. Although the DNA end-binding protein Ku inhibited DNA joining by DNA ligase IV-XRCC4, it did not prevent this complex from binding to DNA. Instead, DNA ligase IV-XRCC4 and Ku bound simultaneously to the ends of duplex DNA molecules. DNA ligase IV-XRCC4 and DNA-PKcs also formed complexes at the ends of DNA molecules, but DNA-PKcs did not inhibit ligation. Interestingly, DNA-PKcs stimulated intermolecular ligation by DNA ligase IV-XRCC4. In the presence of DNA-PK, the majority of the joining events catalyzed by DNA ligase IV-XRCC4 were intermolecular because Ku inhibited intramolecular ligation, but DNA-PKcs still stimulated intramolecular ligation. We suggest that DNA-PKcs-containing complexes formed at DNA ends enhance the association of DNA ends via protein-protein interactions, thereby stimulating intermolecular ligation.


Asunto(s)
ADN Ligasas/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Catálisis , Línea Celular , ADN Ligasa (ATP) , Proteína Quinasa Activada por ADN , Humanos , Sustancias Macromoleculares , Proteínas Nucleares , Unión Proteica , Spodoptera
19.
Proc Natl Acad Sci U S A ; 94(24): 12863-8, 1997 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-9371766

RESUMEN

Although three human genes encoding DNA ligases have been isolated, the molecular mechanisms by which these gene products specifically participate in different DNA transactions are not well understood. In this study, fractionation of a HeLa nuclear extract by DNA ligase I affinity chromatography resulted in the specific retention of a replication protein, proliferating cell nuclear antigen (PCNA), by the affinity resin. Subsequent experiments demonstrated that DNA ligase I and PCNA interact directly via the amino-terminal 118 aa of DNA ligase I, the same region of DNA ligase I that is required for localization of this enzyme at replication foci during S phase. PCNA, which forms a sliding clamp around duplex DNA, interacts with DNA pol delta and enables this enzyme to synthesize DNA processively. An interaction between DNA ligase I and PCNA that is topologically linked to DNA was detected. However, DNA ligase I inhibited PCNA-dependent DNA synthesis by DNA pol delta. These observations suggest that a ternary complex of DNA ligase I, PCNA and DNA pol delta does not form on a gapped DNA template. Consistent with this idea, the cell cycle inhibitor p21, which also interacts with PCNA and inhibits processive DNA synthesis by DNA pol delta, disrupts the DNA ligase I-PCNA complex. Thus, we propose that after Okazaki fragment DNA synthesis is completed by a PCNA-DNA pol delta complex, DNA pol delta is released, allowing DNA ligase I to bind to PCNA at the nick between adjacent Okazaki fragments and catalyze phosphodiester bond formation.


Asunto(s)
ADN Ligasas/metabolismo , ADN/biosíntesis , Antígeno Nuclear de Célula en Proliferación/metabolismo , Cromatografía de Afinidad , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Ciclinas/metabolismo , ADN/metabolismo , ADN Ligasa (ATP) , ADN Polimerasa III/metabolismo , Replicación del ADN , Células HeLa , Humanos , Unión Proteica , Procesamiento Proteico-Postraduccional
20.
Cell ; 69(3): 495-503, 1992 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-1581963

RESUMEN

Two missense mutations occurring in different alleles of the DNA ligase I gene, encoding the major DNA ligase in proliferating mammalian cells, were detected in a human fibroblast strain (46BR). These cells exhibit retarded joining of Okazaki fragments during DNA replication and hypersensitivity to a variety of DNA-damaging agents. 46BR was derived from a patient who displayed symptoms of immunodeficiency, stunted growth, and sun sensitivity. A strongly reduced ability of DNA ligase I to form a labeled enzyme-adenylate intermediate correlated with the genetic defect in 46BR cells. The data indicate that human DNA ligase I is required for joining of Okazaki fragments during lagging-strand DNA synthesis and the completion of DNA excision repair.


Asunto(s)
Daño del ADN , ADN Ligasas/genética , Síndromes de Inmunodeficiencia/genética , Mutación , Alelos , Secuencia de Bases , Síndrome de Bloom/genética , Células Cultivadas , ADN Ligasa (ATP) , Reparación del ADN , Femenino , Trastornos del Crecimiento/genética , Humanos , Técnicas In Vitro , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA