Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36768549

RESUMEN

The effect of mycotoxin patulin (4-hydroxy-4H-furo [3,2c] pyran-2 [6H] -one) on the mitochondrial carnitine/acylcarnitine carrier (CAC, SLC25A20) was investigated. Transport function was measured as [3H]-carnitineex/carnitinein antiport in proteoliposomes reconstituted with the native protein extracted from rat liver mitochondria or with the recombinant CAC over-expressed in E. coli. Patulin (PAT) inhibited both the mitochondrial native and recombinant transporters. The inhibition was not reversed by physiological and sulfhydryl-reducing reagents, such as glutathione (GSH) or dithioerythritol (DTE). The IC50 derived from the dose-response analysis indicated that PAT inhibition was in the range of 50 µM both on the native and on rat and human recombinant protein. The kinetics process revealed a competitive type of inhibition. A substrate protection experiment confirmed that the interaction of PAT with the protein occurred within a protein region, including the substrate-binding area. The mechanism of inhibition was identified using the site-directed mutagenesis of CAC. No inhibition was observed on Cys mutants in which only the C136 residue was mutated. Mass spectrometry studies and in silico molecular modeling analysis corroborated the outcomes derived from the biochemical assays.


Asunto(s)
Patulina , Humanos , Animales , Ratas , Escherichia coli/metabolismo , Cisteína/metabolismo , Reactivos de Sulfhidrilo/farmacología , Carnitina/farmacología , Carnitina/metabolismo , Glutatión/metabolismo , Proteínas de Transporte de Membrana
2.
Molecules ; 25(4)2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32070004

RESUMEN

The effect of copper on the mitochondrial carnitine/acylcarnitine carrier (CAC) was studied. Transport function was assayed as [3H]carnitine/carnitine antiport in proteoliposomes reconstituted with the native protein extracted from rat liver mitochondria or with the recombinant CAC over-expressed in E. coli. Cu2+ (as well as Cu+) strongly inhibited the native transporter. The inhibition was reversed by GSH (reduced glutathione) or by DTE (dithioerythritol). Dose-response analysis of the inhibition of the native protein was performed from which an IC50 of 1.6 µM for Cu2+ was derived. The mechanism of inhibition was studied by using the recombinant WT or Cys site-directed mutants of CAC. From the dose-response curve of the effect of Cu2+ on the recombinant protein, an IC50 of 0.28 µM was derived. Inhibition kinetics revealed a non-competitive type of inhibition by Cu2+. However, a substrate protection experiment indicated that the interaction of Cu2+ with the protein occurred in the vicinity of the substrate-binding site. Dose-response analysis on Cys mutants led to much higher IC50 values for the mutants C136S or C155S. The highest value was obtained for the C136/155S double mutant, indicating the involvement of both Cys residues in the interaction with Cu2+. Computational analysis performed on the WT CAC and on Cys mutants showed a pattern of the binding energy mostly overlapping the binding affinity derived from the dose-response analysis. All the data concur with bridging of Cu2+ with the two Cys residues, which blocks the conformational changes required for transport cycle.


Asunto(s)
Carnitina Aciltransferasas/metabolismo , Cobre/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Animales , Carnitina Aciltransferasas/genética , Química Computacional , Cinética , Mutagénesis Sitio-Dirigida , Mutación/genética , Ratas , Pez Cebra
3.
Molecules ; 24(23)2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31775359

RESUMEN

The orphan drug dantrolene (DAN) is the only therapeutic treatment for malignant hyperthermia (MH), a pharmacogenetic pathology affecting 0.2 over 10,000 people in the EU. It acts by inhibiting ryanodine receptors, which are responsible for calcium recruitment in striatal muscles and brain. Because of its involvement in calcium homeostasis, DAN has been successfully investigated for its potential as neuroprotecting small molecule in several animal models of Alzheimer's disease (AD). Nevertheless, its effects at a molecular level, namely on putative targets involved in neurodegeneration, are still scarcely known. Herein, we present a prospective study on repurposing of DAN involving, besides the well-known calcium antagonism, inhibition of monoamine oxidase B and acetylcholinesterase, cytoprotection from oxidative insult, and activation of carnitine/acylcarnitine carrier, as concurring biological activities responsible for neuroprotection.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Calcio/metabolismo , Dantroleno/farmacología , Fármacos Neuroprotectores/farmacología , Acetilcolinesterasa/efectos de los fármacos , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/patología , Bloqueadores de los Canales de Calcio/química , Bloqueadores de los Canales de Calcio/farmacología , Carnitina/análogos & derivados , Carnitina/metabolismo , Línea Celular , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Dantroleno/química , Reposicionamiento de Medicamentos , Humanos , Hipertermia Maligna/tratamiento farmacológico , Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/farmacología , Fármacos Neuroprotectores/química
4.
Biochim Biophys Acta Bioenerg ; 1858(7): 475-482, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28438511

RESUMEN

S-nitrosylation of the mitochondrial carnitine/acylcarnitine transporter (CACT) has been investigated on the native and the recombinant proteins reconstituted in proteoliposomes, and on intact mitochondria. The widely-used NO-releasing compound, GSNO, strongly inhibited the antiport measured in proteoliposomes reconstituted with the native CACT from rat liver mitochondria or the recombinant rat CACT over-expressed in E. coli. Inhibition was reversed by the reducing agent dithioerythritol, indicating a reaction mechanism based on nitrosylation of Cys residues of the CACT. The half inhibition constant (IC50) was very similar for the native and recombinant proteins, i.e., 74 and 71µM, respectively. The inhibition resulted to be competitive with respect the substrate, carnitine. NO competed also with NEM, correlating well with previous data showing interference of NEM with the substrate transport path. Using a site-directed mutagenesis approach on Cys residues of the recombinant CACT, the target of NO was identified. C136 plays a major role in the reaction mechanism. The occurrence of S-nitrosylation was demonstrated in intact mitochondria after treatment with GSNO, immunoprecipitation and immunostaining of CACT with a specific anti NO-Cys antibody. In parallel samples, transport activity of CACT measured in intact mitochondria, was strongly inhibited after GSNO treatment. The possible physiological and pathological implications of the post-translational modification of CACT are discussed.


Asunto(s)
Carnitina Aciltransferasas/antagonistas & inhibidores , Cisteína/química , Mitocondrias/metabolismo , Óxido Nítrico/farmacología , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Animales , Transporte Biológico , Carnitina/análogos & derivados , Carnitina/metabolismo , Carnitina Aciltransferasas/química , Carnitina Aciltransferasas/genética , Carnitina Aciltransferasas/metabolismo , Secuencia Conservada , Ditioeritritol/farmacología , Liposomas , Mitocondrias/efectos de los fármacos , Modelos Moleculares , Donantes de Óxido Nítrico/farmacología , Nitrógeno , Oxidación-Reducción , Conformación Proteica , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Ratas , S-Nitrosoglutatión/farmacología , Alineación de Secuencia , Homología de Secuencia de Aminoácido
5.
Biochim Biophys Acta ; 1860(1 Pt A): 20-7, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26459002

RESUMEN

BACKGROUND: The carnitine/acylcarnitine carrier (CAC or CACT) mediates transport of acylcarnitines into mitochondria for the ß-oxidation. CAC possesses Cys residues which respond to redox changes undergoing to SH/disulfide interconversion. METHODS: The effect of H2S has been investigated on the [(3)H]carnitine/carnitine antiport catalyzed by recombinant or native CAC reconstituted in proteoliposomes. Site-directed mutagenesis was employed for identifying Cys reacting with H2S. RESULTS: H2S led to transport inhibition, which was dependent on concentration, pH and time of incubation. Best inhibition with IC50 of 0.70 µM was observed at physiological pH after 30-60 min incubation. At longer times of incubation, inhibition was reversed. After oxidation of the carrier by O2, transport activity was rescued by H2S indicating that the inhibition/activation depends on the initial redox state of the protein. The observed effects were more efficient on the native rat liver transporter than on the recombinant protein. Only the protein containing both C136 and C155 responded to the reagent as the WT. While reduced responses were observed in the mutants containing C136 or C155. Multi-alignment of known mitochondrial carriers, highlighted that only the CAC possesses both Cys residues. This correlates well with the absence of effects of H2S on carriers which does not contain the Cys couple. CONCLUSIONS: Altogether, these data demonstrate that H2S regulates the CAC by inhibiting or activating transport on the basis of the redox state of the protein. GENERAL SIGNIFICANCE: CAC represents a specific target of H2S among mitochondrial carriers in agreement with the presence of a reactive Cys couple.


Asunto(s)
Carnitina Aciltransferasas/antagonistas & inhibidores , Cisteína/química , Sulfuro de Hidrógeno/farmacología , Mitocondrias/metabolismo , Secuencia de Aminoácidos , Carnitina Aciltransferasas/química , Datos de Secuencia Molecular
6.
Mol Cell Biochem ; 426(1-2): 65-73, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27864727

RESUMEN

The carnitine/acylcarnitine transporter (CACT; SLC25A20) mediates an antiport reaction allowing entry of acyl moieties in the form of acylcarnitines into the mitochondrial matrix and exit of free carnitine. The transport function of CACT is crucial for the ß-oxidation pathway. In this work, it has been found that CACT is partially acetylated in rat liver mitochondria as demonstrated by anti-acetyl-lys antibody immunostaining. Acetylation was reversed by the deacetylase Sirtuin 3 in the presence of NAD+. After treatment of the mitochondrial extract with the deacetylase, the CACT activity, assayed in proteoliposomes, increased. The half-saturation constant of the CACT was not influenced, while the V max was increased by deacetylation. Sirtuin 3 was not able to deacetylate the CACT when incubation was performed in intact mitoplasts, indicating that the acetylation sites are located in the mitochondrial matrix. Prediction on the localization of acetylated residues by bioinformatics correlates well with the experimental data. Recombinant CACT treated with acetyl-CoA was partially acetylated by non-enzymatic mechanism with a corresponding decrease of transport activity. The experimental data indicate that acetylation of CACT inhibits its transport activity, and thus may contribute to the regulation of the mitochondrial ß-oxidation pathway.


Asunto(s)
Carnitina Aciltransferasas/metabolismo , Proteínas Mitocondriales/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Acetilación , Animales , Transporte Biológico Activo/fisiología , Carnitina Aciltransferasas/química , Carnitina Aciltransferasas/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , NAD/química , NAD/genética , NAD/metabolismo , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sirtuina 3/química , Sirtuina 3/genética , Sirtuina 3/metabolismo
7.
Chem Res Toxicol ; 28(5): 1015-22, 2015 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-25849418

RESUMEN

The effect of Hg(2+) and CH3Hg(+) on the mitochondrial carnitine/acylcarnitine transporter (CACT) has been studied on the recombinant protein and on the CACT extracted from HeLa cells or Zebrafish and reconstituted in proteoliposomes. Transport was abolished upon treatment of the recombinant CACT in proteoliposomes by Hg(2+) or CH3Hg(+). Inhibition was reversed by the SH reducing agent 1,4-dithioerythritol, GSH, and N-acetylcysteine. IC50 for Hg(2+) and CH3Hg(+) of 90 nM and 137 nM, respectively, were measured by dose-response analyses. Inhibition was abolished in the C-less CACT mutant. Strong reduction of inhibition by both reagents was observed in the C136A and some reduction in the C155A mutants. Inhibition similar to that of the WT was observed in the C23V/C58V/C89S/C155V/C283S mutant, containing only C136. Optimal inhibition by Hg(2+)was found in the four replacement mutants C23V/C58V/C89S/C283S containing both C136 and C155 indicating cross-reaction of Hg(2+) with the two Cys residues. Inhibition kinetic analysis showed mixed inhibition by Hg(2+) or competitive inhibition by CH3Hg(+). HeLa cells or Zebrafish were treated with the more potent inhibitor. Ten micromolar HgCl2 caused clear impairment of viability of HeLa cells. The transport assay in proteoliposomes with CACT extracted from treated cells showed that the transporter was inactivated and that DTE rescued the activity. Nearly identical results were observed with Zebrafish upon extraction of the CACT from the liver of the treated animals that, indeed, showed accumulation of the mercurial compound.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Mercurio/toxicidad , Compuestos de Metilmercurio/toxicidad , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células HeLa , Humanos , Proteínas de Transporte de Membrana/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación Puntual , Proteolípidos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Pez Cebra/genética
8.
Biochemistry ; 53(44): 6924-33, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25325845

RESUMEN

The mitochondrial carnitine/acylcarnitine carrier catalyzes the transport of carnitine and acylcarnitines by antiport as well as by uniport with a rate slower than the rate of antiport. The mechanism of antiport resulting from coupling of two opposed uniport reactions was investigated by site-directed mutagenesis. The transport reaction was followed as [(3)H]carnitine uptake in or efflux from proteoliposomes reconstituted with the wild type or mutants, in the presence or absence of a countersubstrate. The ratio between the antiport and uniport rates for the wild type was 3.0 or 2.5, using the uptake or efflux procedure, respectively. This ratio did not vary substantially in mutants H29A, K35R, G121A, E132A, K135A, R178A, D179E, E191A, K194A, K234A, and E288A. A ratio of 1.0 was measured for mutant K35A, indicating a loss of antiport function by this mutant. Ratios of >1.0 but significantly lower than that of the wild type were measured for mutants D32A, K97A, and D231A, indicating the involvement of these residues in the antiport mechanism. To investigate the role of the countersubstrate in the conformational changes underlying the transport reaction, the m-state of the transporter (opened toward the matrix side) was specifically labeled with N-ethylmaleimide while the c-state of the carrier (opened toward the cytosolic side) was labeled with fluorescein maleimide. The labeling results indicated that the addition of an external substrate, on one hand, reduced the amount of protein in the m-state and, on the other, increased the protein fraction in the c-state. This substrate-induced conformational change was abolished in the protein lacking K35, pointing to the role of this residue as a sensor in the mechanism of the antiport reaction.


Asunto(s)
Proteínas de Transporte de Membrana/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Transporte Biológico , Carnitina/química , Bovinos , Secuencia Conservada , Humanos , Cinética , Liposomas/química , Proteínas de Transporte de Membrana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida
9.
Mol Cell Biochem ; 394(1-2): 307-14, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24898781

RESUMEN

Carnitine/acylcarnitine translocase and carnitine palmitoyltransferase 2 are members of the carnitine system, which are responsible of the regulation of the mitochondrial CoA/acyl-CoA ratio and of supplying substrates for the ß-oxidation to mitochondria. This study, using cross-Linking reagent, Blue native electrophoresis and immunoprecipitation followed by detection with immunoblotting, shows conclusive evidence about the interaction between carnitine palmitoyltransferase 2 and carnitine/acylcarnitine translocase supporting the channeling of acylcarnitines and carnitine at level of the inner mitochondrial membrane.


Asunto(s)
Carnitina Aciltransferasas/metabolismo , Carnitina O-Palmitoiltransferasa/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias Hepáticas/enzimología , Membranas Mitocondriales/enzimología , Animales , Western Blotting , Carnitina/análogos & derivados , Carnitina/metabolismo , Carnitina O-Palmitoiltransferasa/química , Reactivos de Enlaces Cruzados/química , Formaldehído/química , Inmunoprecipitación , Proteínas de Transporte de Membrana/química , Modelos Moleculares , Electroforesis en Gel de Poliacrilamida Nativa , Unión Proteica , Conformación Proteica , Ratas
10.
Biochim Biophys Acta ; 1817(5): 697-704, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22365929

RESUMEN

The role of hydrophobic residues of the mitochondrial carnitine/acylcarnitine carrier (CAC) in the inhibition by acylcarnitines has been investigated by site-directed mutagenesis. According to the homology model of CAC in cytosolic opened conformation (c-state), L14, G17, G21, V25, P78, V82, M85, C89, F93, A276, A279, C283, F287 are located in the 1st (H1), 2nd (H2) and 6th (H6) transmembrane α-helices and exposed in the central cavity, forming a hydrophobic half shell. These residues have been substituted with A (or G) and in some cases with M. Mutants have been assayed for transport activity measured as [(3)H]carnitine/carnitine antiport in proteoliposomes. With the exception of G17A and G21M, mutants exhibited activity from 20% to 100% of WT. Among the active mutants only G21A, V25M, P78A and P78M showed Vmax lower than half and/or Km more than two fold respect to WT. Acylcarnitines competitively inhibited carnitine antiport. The extent of inhibition of the mutants by acylcarnitines with acyl chain length of 2, 4, 8, 12, 14 and 16 has been compared with the WT. V25A, P78A, P78M and A279G showed reduced extent of inhibition by all the acylcarnitines; V25M showed reduced inhibition by shorter acylcarnitines; V82A, V82M, M85A, C89A and A276G showed reduced inhibition by longer acylcarnitines, respect to WT. C283A showed increased extent of inhibition by acylcarnitines. Variations of Ki of mutants for acylcarnitines reflected variations of the inhibition profiles. The data demonstrated that V25, P78, V82, M85 and C89 are involved in the acyl chain binding to the CAC in c-state.


Asunto(s)
Carnitina Aciltransferasas/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Mitocondrias/enzimología , Mutagénesis Sitio-Dirigida/métodos , Acilación/efectos de los fármacos , Animales , Sitios de Unión , Carnitina/análogos & derivados , Carnitina/farmacología , Carnitina Aciltransferasas/antagonistas & inhibidores , Carnitina Aciltransferasas/química , Carnitina Aciltransferasas/genética , Biología Computacional , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Cinética , Mitocondrias/efectos de los fármacos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Palmitoilcarnitina/química , Palmitoilcarnitina/metabolismo , Unión Proteica/efectos de los fármacos , Ratas , Factores de Tiempo
11.
Neurochem Res ; 38(12): 2535-41, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24104610

RESUMEN

The carnitine/acylcarnitine transporter is a transport system whose function is essential for the mitochondrial ß-oxidation of fatty acids. Here, the presence of carnitine/acylcarnitine carrier (CACT) in nervous tissue and its sub-cellular localization in dorsal root ganglia (DRG) neurons have been investigated. Western blot analysis using a polyclonal anti-CACT antibody produced in our laboratory revealed the presence of CACT in all the nervous tissue extracts analyzed. Confocal microscopy experiments performed on fixed and permeabilized DRG neurons co-stained with the anti-CACT antibody and the mitochondrial marker MitoTracker Red clearly showed a mitochondrial localization for the carnitine/acylcarnitine transporter. The transport activity of CACT from DRG extracts reconstituted into liposomes was about 50 % in respect to liver extracts. The experimental data here reported represent the first direct evidence of the expression of the carnitine/acylcarnitine transporter in sensory neurons, thus supporting the existence of the ß-oxidation pathway in these cells.


Asunto(s)
Carnitina Aciltransferasas/metabolismo , Ganglios Espinales/enzimología , Mitocondrias/enzimología , Células Receptoras Sensoriales/enzimología , Animales , Western Blotting , Ganglios Espinales/citología , Liposomas , Masculino , Ratas , Ratas Sprague-Dawley
12.
Biomolecules ; 13(6)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37371573

RESUMEN

BACKGROUND: The carnitine/acylcarnitine carrier (CAC) represents the route of delivering acyl moieties to the mitochondrial matrix for accomplishing the fatty acid ß-oxidation. The CAC has a couple of Cys residues (C136 and C155) most reactive toward ROS and redox signaling compounds such as GSH, NO, and H2S. Among physiological compounds reacting with Cys, itaconate is produced during inflammation and represents the connection between oxidative metabolism and immune responses. The possible interaction between the CAC and itaconate has been investigated. METHODS: the modulatory effects of itaconate on the transport activity of the native and recombinant CAC were tested using the proteoliposome experimental model together with site-directed mutagenesis and computational analysis. RESULTS: Itaconate reacts with the CAC causing irreversible inhibition. Dose-response experiment performed with the native and recombinant protein showed IC50 for itaconate of 11 ± 4.6 mM and 8.4 ± 2.9 mM, respectively. The IC50 decreased to 3.8 ± 1.0 mM by lowering the pH from pH 7.0 to pH 6.5. Inhibition kinetics revealed a non-competitive type of inhibition. C136 is the main target of itaconate, as demonstrated by the increased IC50 of mutants in which this Cys was substituted by Val. The central role of C136 was confirmed by covalent docking. Administration of dimethyl itaconate to HeLa cells inhibited the CAC transport activity, suggesting that itaconate could react with the CAC also in intact cells.


Asunto(s)
Proteínas de Transporte de Membrana , Mitocondrias , Humanos , Carnitina/metabolismo , Cisteína/metabolismo , Células HeLa/efectos de los fármacos , Proteínas de Transporte de Membrana/efectos de los fármacos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Moduladores del Transporte de Membrana/farmacología
13.
Biochim Biophys Acta Bioenerg ; 1863(5): 148557, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35367451

RESUMEN

We herein report the identification of the lantanide praseodymium trivalent ion Pr3+ as inhibitor of mitochondrial transporters for basic amino acids and phylogenetically related carriers belonging to the Slc25 family. The inhibitory effect of Pr3+ has been tested using mitochondrial transporters reconstituted into liposomes being effective in the micromolar range, acting as a competitive inhibitor of the human basic amino acids carrier (BAC, Slc25A29), the human carnitine/acylcarnitine carrier (CAC, Slc25A20). Furthermore, we provide computational evidence that the complete inhibition of the transport activity of the recombinant proteins is due to the Pr3+ coordination to key acidic residues of the matrix salt bridge network. Besides being used as a first choice stop inhibitor for functional studies in vitro of mitochondrial carriers reconstituted in proteoliposomes, Pr3+ might also represent a useful tool for structural studies of the mitochondrial carrier family.


Asunto(s)
Carnitina Aciltransferasas , Praseodimio , Aminoácidos Básicos , Carnitina/análogos & derivados , Carnitina/metabolismo , Carnitina Aciltransferasas/química , Humanos , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas Mitocondriales/metabolismo
14.
Int J Biol Macromol ; 221: 1453-1465, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36122779

RESUMEN

Mitochondrial carnitine/acylcarnitine carrier (CAC) is a member of the mitochondrial carrier (MC) family and imports acylcarnitine into the mitochondrial matrix in exchange for carnitine, playing a pivotal role in carnitine shuttle, crucial for fatty acid oxidation. The crystallized structure of CAC has not been solved yet, however, the availability of several in vitro/in silico studies, also based on the crystallized structures of the ADP/ATP carrier in the cytosolic-conformation and in the matrix-conformation, has made possible to confirm the hypothesis of the single-binding centered-gated pore mechanism for all the members of the MC family. In addition, our recent bioinformatics analyses allowed quantifying in silico the importance of protein residues of MC substrate binding region, of those involved in the formation of the matrix and cytosolic gates, and of those belonging to the Pro/Gly (PG) levels, proposed to be crucial for the tilting/kinking/bending of the six MC transmembrane helices, funneling the substrate translocation pathway. Here we present a combined in silico/in vitro analysis employed for investigating the role played by a group of 6 proline residues and 6 glycine residues, highly conserved in CAC, belonging to MC PG-levels. Residues of the PG-levels surround the similarly located MC common substrate binding region, and were proposed to lead conformational changes and substrate translocation, following substrate binding. For our analysis, we employed 3D molecular modeling approaches, alanine scanning site-directed mutagenesis and in vitro transport assays. Our analysis reveals that P130 (H3), G268 (H6) and G220 (H5), mutated in alanine, affect severely CAC transport activity (mutant catalytic efficiency lower than 5 % compared to the wild type CAC), most likely due to their major role in triggering CAC conformational changes, following carnitine binding. Notably, P30A (H1) and G121A (H3) CAC mutants, increase the carnitine uptake up to 217 % and 112 %, respectively, compared to the wild type CAC.


Asunto(s)
Carnitina Aciltransferasas , Prolina , Carnitina Aciltransferasas/genética , Carnitina Aciltransferasas/química , Carnitina Aciltransferasas/metabolismo , Glicina , Carnitina , Alanina
15.
Sci Rep ; 12(1): 14570, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36028562

RESUMEN

The type II glycoprotein CD98 (SLC3A2) is a membrane protein with pleiotropic roles in cells, ranging from modulation of inflammatory processes, host-pathogen interactions to association with membrane transporters of the SLC7 family. The recent resolution of CD98 structure in complex with LAT1 showed that four Asn residues, N365, N381, N424, N506, harbour N-glycosylation moieties. Then, the role of N-glycosylation on CD98 trafficking and stability was investigated by combining bioinformatics, site-directed mutagenesis and cell biology approach. Single, double, triple and quadruple mutants of the four Asn exhibited altered electrophoretic mobility, with apparent molecular masses from 95 to 70 kDa. The quadruple mutant displayed a single band of 70 kDa corresponding to the unglycosylated protein. The presence in the membrane and the trafficking of CD98 were evaluated by a biotinylation assay and a brefeldin assay, respectively. Taken together, the results highlighted that the quadruple mutation severely impaired both the stability and the trafficking of CD98 to the plasma membrane. The decreased presence of CD98 at the plasma membrane, correlated with a lower presence of LAT1 (SLC7A5) and its transport activity. This finding opens new perspectives for human therapy. Indeed, the inhibition of CD98 trafficking would act synergistically with LAT1 inhibitors that are under clinical trial for anticancer therapy.


Asunto(s)
Transportador de Aminoácidos Neutros Grandes 1 , Proteínas de Transporte de Membrana , Membrana Celular , Cadena Pesada de la Proteína-1 Reguladora de Fusión , Glicosilación , Humanos , Mutagénesis Sitio-Dirigida
16.
Free Radic Biol Med ; 188: 395-403, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35792242

RESUMEN

Both toxic and physiological effects of CO are mostly caused by well described interactions with heme-groups of proteins. Interactions of CO with non-heme proteins have also been unveiled. Besides interaction of CO with mitochondrial heme containing respiratory complexes, a BK channel and the phosphate carrier which do not contain metal cofactors, have been identified as CO targets. However, the molecular mechanisms of interaction with non-metal-containing proteins are not understood. We show in this work the effect of CO on the mitochondrial carnitine carrier (SLC25A20) using CORM-3, a widely recognized CO releasing compound. CO exerts an inhibitory effect at the micromolar concentration on the transport function of the transporter extracted from treated mitochondria. The effect is due to a single Cys residue, C136 as revealed by mass spectrometry analysis. A computational approach predicted the need for vicinal Asp and Lys residues for the C136 carbonylation to occur. These data demonstrate a novel mechanism of interaction of CO with a protein not containing metal atoms and will enable the prediction of CO targets.


Asunto(s)
Monóxido de Carbono , Compuestos Organometálicos , Monóxido de Carbono/metabolismo , Monóxido de Carbono/farmacología , Carnitina/análogos & derivados , Carnitina/metabolismo , Hemo/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Compuestos Organometálicos/farmacología
17.
Biochim Biophys Acta ; 1797(6-7): 839-45, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20347717

RESUMEN

The structure/function relationships of charged residues of the human mitochondrial carnitine/acylcarnitine carrier, which are conserved in the carnitine/acylcarnitine carrier subfamily and exposed to the water-filled cavity of carnitine/acylcarnitine carrier in the c-state, have been investigated by site-directed mutagenesis. The mutants were expressed in Escherichia coli, purified and reconstituted in liposomes, and their transport activity was measured as 3H-carnitine/carnitine antiport. The mutants K35A, E132A, D179A and R275A were nearly inactive with transport activities between 5 and 10% of the wild-type carnitine/acylcarnitine carrier. R178A, K234A and D231A showed transport function of about 15% of the wild-type carnitine/acylcarnitine carrier. The substitutions of the other residues with alanine had little or no effect on the carnitine/acylcarnitine carrier activity. Marked changes in the kinetic parameters with three-fold higher Km and lower Vmax values with respect to the wild-type carnitine/acylcarnitine carrier were found when replacing Lys-35, Glu-132, Asp-179 and Arg-275 with alanine. Double mutants exhibited transport activities and kinetic parameters reflecting those of the single mutants; however, lack of D179A activity was partially rescued by the additional mutation R178A. The results provide evidence that Arg-275, Asp-179 and Arg-178, which protrude into the carrier's internal cavity at about the midpoint of the membrane, are the critical binding sites for carnitine. Furthermore, Lys-35 and Glu-132, which are very probably involved in the salt-bridge network located at the bottom of the cavity, play a major role in opening and closing the matrix gate.


Asunto(s)
Carnitina Aciltransferasas/genética , Carnitina Aciltransferasas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión/genética , Transporte Biológico Activo , Carnitina/metabolismo , Carnitina Aciltransferasas/química , Humanos , Técnicas In Vitro , Cinética , Liposomas , Proteínas de Transporte de Membrana Mitocondrial/química , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
18.
Biometals ; 24(6): 1205-15, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21769608

RESUMEN

The effect of heavy metal cations on the mitochondrial ornithine/citrulline transporter was tested in proteoliposomes reconstituted with the protein purified from rat liver. The transport activity was measured as [(3)H]ornithine uptake in proteoliposomes containing internal ornithine (ornithine/ornithine antiport mode) or as [(3)H]ornithine efflux in the absence of external substrate (ornithine/H(+) transport mode). 0.1 mM Cu(2+), Pb(2+), Hg(2+), Cd(2+) and Zn(2+) strongly inhibited (more than 85%) the antiport; whereas Mn(2+), Co(2+) and Ni(2+) inhibited less efficiently (25, 47 and 69%, respectively). The IC(50) values of the transporter for the different metal ions ranged from 0.71 to 350 µM. Co(2+) and Ni(2+) also inhibited the [(3)H]ornithine efflux whereas Cu(2+), Pb(2+), Hg(2+), Cd(2+) and Zn(2+) stimulated the [(3)H]ornithine efflux. The stimulation of the [(3)H]ornithine efflux by Cu(2+) and Cd(2+) (as well as by Pb(2+), Hg(2+) and Zn(2+)) was not prevented by NEM and was reversed by DTE. These features indicated that the inhibition of the antiport was due to the interaction of the Cu(2+), Pb(2+), Hg(2+), Cd(2+) and Zn(2+) with a population of SH groups, of the transporter, responsible for the inhibition of the physiological function; whereas the stimulation of [(3)H]ornithine efflux was due to the induction of a pore-like function of the transporter caused by interaction of cations with a different population of SH groups. Differently, the inhibition of the ornithine transporter by Ni(2+), Co(2+) or Mn(2+) was caused by interaction with the substrate binding site, as indicated by the competitive or mixed inhibition.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Cationes/farmacología , Liposomas/metabolismo , Metales Pesados/farmacología , Mitocondrias/efectos de los fármacos , Sistemas de Transporte de Aminoácidos Básicos/química , Animales , Sitios de Unión , Transporte Biológico , Citrulina/metabolismo , Concentración 50 Inhibidora , Hígado/metabolismo , Mitocondrias/metabolismo , Modelos Moleculares , Ornitina/metabolismo , Conformación Proteica , Ratas
19.
Biomolecules ; 11(4)2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807231

RESUMEN

The SLC25A20 transporter, also known as carnitine acyl-carnitine carrier (CAC), catalyzes the transport of short, medium and long carbon chain acyl-carnitines across the mitochondrial inner membrane in exchange for carnitine. The 30-year story of the protein responsible for this function started with its purification from rat liver mitochondria. Even though its 3D structure is not yet available, CAC is one of the most deeply characterized transport proteins of the inner mitochondrial membrane. Other than functional, kinetic and mechanistic data, post-translational modifications regulating the transport activity of CAC have been revealed. CAC interactions with drugs or xenobiotics relevant to human health and toxicology and the response of the carrier function to dietary compounds have been discovered. Exploiting combined approaches of site-directed mutagenesis with chemical targeting and bioinformatics, a large set of data on structure/function relationships have been obtained, giving novel information on the molecular mechanism of the transport catalyzed by this protein.


Asunto(s)
Carnitina/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Sitios de Unión , Carnitina/química , Glutatión/química , Glutatión/metabolismo , Humanos , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/química , Sulfuro de Hidrógeno/metabolismo , Oxidación-Reducción , Especificidad por Sustrato
20.
ChemMedChem ; 16(18): 2807-2816, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34047061

RESUMEN

Dantrolene, a drug used for the management of malignant hyperthermia, had been recently evaluated for prospective repurposing as multitarget agent for neurodegenerative syndromes, including Alzheimer's disease (AD). Herein, twenty-one dantrolene-like hydrazide and hydrazone analogues were synthesized with the aim of exploring structure-activity relationships (SARs) for the inhibition of human monoamine oxidases (MAOs) and acetylcholinesterase (AChE), two well-established target enzymes for anti-AD drugs. With few exceptions, the newly synthesized compounds exhibited selectivity toward MAO B over either MAO A or AChE, with the secondary aldimine 9 and phenylhydrazone 20 attaining IC50 values of 0.68 and 0.81 µM, respectively. While no general SAR trend was observed with lipophilicity descriptors, a molecular simplification strategy allowed the main pharmacophore features to be identified, which are responsible for the inhibitory activity toward MAO B. Finally, further in vitro investigations revealed cell protection from oxidative insult and activation of carnitine/acylcarnitine carrier as concomitant biological activities responsible for neuroprotection by hits 9 and 20 and other promising compounds in the examined series.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Hidrazinas/farmacología , Hidrazonas/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Acetilcolinesterasa/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Hidrazinas/síntesis química , Hidrazinas/química , Hidrazonas/síntesis química , Hidrazonas/química , Estructura Molecular , Monoaminooxidasa/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA