Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 153(3): 590-600, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23622243

RESUMEN

DNA mismatch repair (MMR) ensures replication fidelity by correcting mismatches generated during DNA replication. Although human MMR has been reconstituted in vitro, how MMR occurs in vivo is unknown. Here, we show that an epigenetic histone mark, H3K36me3, is required in vivo to recruit the mismatch recognition protein hMutSα (hMSH2-hMSH6) onto chromatin through direct interactions with the hMSH6 PWWP domain. The abundance of H3K36me3 in G1 and early S phases ensures that hMutSα is enriched on chromatin before mispairs are introduced during DNA replication. Cells lacking the H3K36 trimethyltransferase SETD2 display microsatellite instability (MSI) and an elevated spontaneous mutation frequency, characteristic of MMR-deficient cells. This work reveals that a histone mark regulates MMR in human cells and explains the long-standing puzzle of MSI-positive cancer cells that lack detectable mutations in known MMR genes.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Proteínas de Unión al ADN/metabolismo , Código de Histonas , Secuencia de Aminoácidos , Cromatina/metabolismo , Proteínas de Unión al ADN/química , Humanos , Metilación , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia
2.
Nature ; 572(7769): 373-377, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31261374

RESUMEN

Net anthropogenic emissions of carbon dioxide (CO2) must approach zero by mid-century (2050) in order to stabilize the global mean temperature at the level targeted by international efforts1-5. Yet continued expansion of fossil-fuel-burning energy infrastructure implies already 'committed' future CO2 emissions6-13. Here we use detailed datasets of existing fossil-fuel energy infrastructure in 2018 to estimate regional and sectoral patterns of committed CO2 emissions, the sensitivity of such emissions to assumed operating lifetimes and schedules, and the economic value of the associated infrastructure. We estimate that, if operated as historically, existing infrastructure will cumulatively emit about 658 gigatonnes of CO2 (with a range of 226 to 1,479 gigatonnes CO2, depending on the lifetimes and utilization rates assumed). More than half of these emissions are predicted to come from the electricity sector; infrastructure in China, the USA and the 28 member states of the European Union represents approximately 41 per cent, 9 per cent and 7 per cent of the total, respectively. If built, proposed power plants (planned, permitted or under construction) would emit roughly an extra 188 (range 37-427) gigatonnes CO2. Committed emissions from existing and proposed energy infrastructure (about 846 gigatonnes CO2) thus represent more than the entire carbon budget that remains if mean warming is to be limited to 1.5 degrees Celsius (°C) with a probability of 66 to 50 per cent (420-580 gigatonnes CO2)5, and perhaps two-thirds of the remaining carbon budget if mean warming is to be limited to less than 2 °C (1,170-1,500 gigatonnes CO2)5. The remaining carbon budget estimates are varied and nuanced14,15, and depend on the climate target and the availability of large-scale negative emissions16. Nevertheless, our estimates suggest that little or no new CO2-emitting infrastructure can be commissioned, and that existing infrastructure may need to be retired early (or be retrofitted with carbon capture and storage technology) in order to meet the Paris Agreement climate goals17. Given the asset value per tonne of committed emissions, we suggest that the most cost-effective premature infrastructure retirements will be in the electricity and industry sectors, if non-emitting alternatives are available and affordable4,18.


Asunto(s)
Dióxido de Carbono/análisis , Electricidad , Combustibles Fósiles/provisión & distribución , Calentamiento Global/prevención & control , Objetivos , Cooperación Internacional/legislación & jurisprudencia , Temperatura , Atmósfera/química , Combustibles Fósiles/economía , Calentamiento Global/economía , Gas Natural/provisión & distribución
3.
Nature ; 568(7752): 351-356, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30971818

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is a common syndrome with high morbidity and mortality for which there are no evidence-based therapies. Here we report that concomitant metabolic and hypertensive stress in mice-elicited by a combination of high-fat diet and inhibition of constitutive nitric oxide synthase using Nω-nitro-L-arginine methyl ester (L-NAME)-recapitulates the numerous systemic and cardiovascular features of HFpEF in humans. Expression of one of the unfolded protein response effectors, the spliced form of X-box-binding protein 1 (XBP1s), was reduced in the myocardium of our rodent model and in humans with HFpEF. Mechanistically, the decrease in XBP1s resulted from increased activity of inducible nitric oxide synthase (iNOS) and S-nitrosylation of the endonuclease inositol-requiring protein 1α (IRE1α), culminating in defective XBP1 splicing. Pharmacological or genetic suppression of iNOS, or cardiomyocyte-restricted overexpression of XBP1s, each ameliorated the HFpEF phenotype. We report that iNOS-driven dysregulation of the IRE1α-XBP1 pathway is a crucial mechanism of cardiomyocyte dysfunction in HFpEF.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Estrés Nitrosativo , Volumen Sistólico , Animales , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Endorribonucleasas/metabolismo , Insuficiencia Cardíaca/prevención & control , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/deficiencia , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo
4.
Br J Cancer ; 130(8): 1249-1260, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38361045

RESUMEN

BACKGROUND: The aim of this study was to analyse transcriptomic differences between primary and recurrent high-grade serous ovarian carcinoma (HGSOC) to identify prognostic biomarkers. METHODS: We analysed 19 paired primary and recurrent HGSOC samples using targeted RNA sequencing. We selected the best candidates using in silico survival and pathway analysis and validated the biomarkers using immunohistochemistry on a cohort of 44 paired samples, an additional cohort of 504 primary HGSOCs and explored their function. RESULTS: We identified 233 differential expressed genes. Twenty-three showed a significant prognostic value for PFS and OS in silico. Seven markers (AHRR, COL5A2, FABP4, HMGCS2, ITGA5, SFRP2 and WNT9B) were chosen for validation at the protein level. AHRR expression was higher in primary tumours (p < 0.0001) and correlated with better patient survival (p < 0.05). Stromal SFRP2 expression was higher in recurrent samples (p = 0.009) and protein expression in primary tumours was associated with worse patient survival (p = 0.022). In multivariate analysis, tumour AHRR and SFRP2 remained independent prognostic markers. In vitro studies supported the anti-tumorigenic role of AHRR and the oncogenic function of SFRP2. CONCLUSIONS: Our results underline the relevance of AHRR and SFRP2 proteins in aryl-hydrocarbon receptor and Wnt-signalling, respectively, and might lead to establishing them as biomarkers in HGSOC.


Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias Ováricas , Femenino , Humanos , Pronóstico , Neoplasias Ováricas/patología , Perfilación de la Expresión Génica , Biomarcadores de Tumor/genética , Cistadenocarcinoma Seroso/patología , Proteínas de la Membrana/genética , Proteínas Represoras/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética
5.
J Magn Reson Imaging ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38299767

RESUMEN

BACKGROUND: Serum creatinine (Scr) may be not suited to timely and accurately reflect kidney injury related to chronic liver disease. Currently, the ability of arterial spin labeling (ASL) and blood oxygen level-dependent (BOLD) sequences to evaluate renal blood flow (RBF) and blood oxygen in chronic liver disease remains to be verified. PURPOSE: To investigate the value of ASL and BOLD imaging in evaluating hemodynamics and oxygenation changes during kidney injury in an animal model of chronic liver disease. STUDY TYPE: Prospective. ANIMAL MODEL: Chronic liver disease model was established by subcutaneous injection of carbon tetrachloride. Forty-three male Sprague-Dawley rats (8 weeks) were divided into a pathological group (0, 2, 4, 6, 8, 12 weeks, each group: N = 6) and a continuous-scanning group (N = 7). FIELD STRENGTH/SEQUENCE: 3-T, ASL, BOLD, and T2W. ASSESSMENT: Regions of interest in the cortex (CO), outer stripe of the outer medulla (OSOM), and inner stripe of the outer medulla (ISOM) are manually delineated. The RBF and T2* values at each time point (0, 2, 4, 6, 8, 12 weeks) are measured and compared. Hematoxylin-eosin score (HE Score, damage area scoring method), alpha-smooth muscle actin (α-SMA), hypoxia-inducible factor-1alpha (HIF-1α), peritubular capillar (PTC) density, Scr, and neutrophil gelatinase-associated lipocalin were harvested. STATISTICAL TESTS: Analysis of variance, Spearman correlation analysis, Kruskal-Wallis tests, and receiver operating characteristic analysis with the area under the curve (AUC). A P-value <0.05 was considered statistically significant. RESULTS: Renal RBF and T2* values of CO, OSOM, and ISOM were significantly different from baseline. Both RBF and T2* were significantly correlated with HE Score, α-SMA, HIF-1α, and PTC density (|r| = 0.406-0.853). RBF demonstrated superior diagnostic capability in identifying severe kidney injury in this model of chronic liver disease (AUC = 0.964). DATA CONCLUSION: Imaging by ASL and BOLD may detect renal hemodynamics and oxygenation changes related to chronic liver disease early. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 2.

6.
Ann Surg Oncol ; 30(1): 35-45, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36085390

RESUMEN

BACKGROUND: This study seeks to evaluate the impact of breast cancer (BRCA) gene status on tumor dissemination pattern, surgical outcome and survival in a multicenter cohort of paired primary ovarian cancer (pOC) and recurrent ovarian cancer (rOC). PATIENTS AND METHODS: Medical records and follow-up data from 190 patients were gathered retrospectively. All patients had surgery at pOC and at least one further rOC surgery at four European high-volume centers. Patients were divided into one cohort with confirmed mutation for BRCA1 and/or BRCA2 (BRCAmut) and a second cohort with BRCA wild type or unknown (BRCAwt). Patterns of tumor presentation, surgical outcome and survival data were analyzed between the two groups. RESULTS: Patients with BRCAmut disease were on average 4 years younger and had significantly more tumor involvement upon diagnosis. Patients with BRCAmut disease showed higher debulking rates at all stages. Multivariate analysis showed that only patient age had significant predictive value for complete tumor resection in pOC. At rOC, however, only BRCAmut status significantly correlated with optimal debulking. Patients with BRCAmut disease showed significantly prolonged overall survival (OS) by 24.3 months. Progression-free survival (PFS) was prolonged in the BRCAmut group at all stages as well, reaching statistical significance during recurrence. CONCLUSIONS: Patients with BRCAmut disease showed a more aggressive course of disease with earlier onset and more extensive tumor dissemination at pOC. However, surgical outcome and OS were significantly better in patients with BRCAmut disease compared with patients with BRCAwt disease. We therefore propose to consider BRCAmut status in regard to patient selection for cytoreductive surgery, especially in rOC.


Asunto(s)
Neoplasias de la Mama , Neoplasias Ováricas , Humanos , Femenino , Estudios Retrospectivos , Mutación , Resultado del Tratamiento , Neoplasias Ováricas/genética , Neoplasias Ováricas/cirugía
8.
Environ Sci Technol ; 57(24): 8954-8964, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37276527

RESUMEN

In response to the severe air pollution issue, the Chinese government implemented two phases (Phase I, 2013-2017; Phase II, 2018-2020) of clean air actions since 2013, resulting in a significant decline in fine particles (PM2.5) during 2013-2020, while the warm-season (April-September) mean maximum daily 8 h average ozone (MDA8 O3) increased by 2.6 µg m-3 yr-1 in China during the same period. Here, we derived the drivers behind the rising O3 concentrations during the two phases of clean air actions by using a bottom-up emission inventory, a regional chemical transport model, and a multiple linear regression model. We found that both meteorological variations (3.6 µg m-3) and anthropogenic emissions (6.7 µg m-3) contributed to the growth of MDA8 O3 from 2013 to 2020, with the changes in anthropogenic emissions playing a more important role. The anthropogenic contributions to the O3 rise during 2017-2020 (1.2 µg m-3) were much lower than that in 2013-2017 (5.2 µg m-3). The lack of volatile organic compound (VOC) control and the decline in nitrogen oxides (NOx) emissions were responsible for the O3 increase in 2013-2017 due to VOC-limited regimes in most urban areas, while the synergistic control of VOC and NOx in Phase II initially worked to mitigate O3 pollution during 2018-2020, although its effectiveness was offset by the penalty of PM2.5 decline. Future mitigation efforts should pay more attention to the simultaneous control of VOC and NOx to improve O3 air quality.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Compuestos Orgánicos Volátiles , Ozono/análisis , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos Volátiles/análisis , Contaminación del Aire/análisis , China , Material Particulado/análisis , Monitoreo del Ambiente/métodos
9.
Environ Sci Technol ; 57(13): 5349-5357, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36959739

RESUMEN

Nitrogen dioxide (NO2) is associated with mortality and many other adverse health outcomes. In 2021, the World Health Organization established a new NO2 air quality guideline (AQG) (annual average <10 µg/m3). However, the burden of diseases attributable to long-term NO2 exposure above the AQG is unknown in China. Nitrogen oxide is a major air pollutant in populous cities, which are disproportionately impacted by NO2; this represents a form of environmental inequality. We conducted a nationwide risk assessment of premature deaths attributable to long-term NO2 exposure from 2013 to 2020 based on the exposure-response relationship, high-resolution annual NO2 concentrations, and gridded population data (considering sex, age, and residence [urban vs rural]). We calculated health metrics including attributable deaths, years of life lost (YLL), and loss of life expectancy (LLE). Inequality in the distribution of attributable deaths and YLLs was evaluated by the Lorenz curve and Gini index. According to the health impact assessments, in 2013, long-term NO2 exposure contributed to 315,847 (95% confidence interval [CI]: 306,709-319,269) premature deaths, 7.90 (7.68-7.99) million YLLs, and an LLE of 0.51 (0.50-0.52) years. The high-risk subgroup (top 20%) accounted for 85.7% of all NO2-related deaths and 85.2% of YLLs, resulting in Gini index values of 0.81 and 0.67, respectively. From 2013 to 2020, the estimated health impact from NO2 exposure was significantly reduced, but inequality displayed a slightly increasing trend. Our study revealed a considerable burden of NO2-related deaths in China, which were disproportionally frequent in a small high-risk subgroup. Future clean air initiatives should focus not only on reducing the average level of NO2 exposure but also minimizing inequality.


Asunto(s)
Contaminantes Atmosféricos , Exposición a Riesgos Ambientales , Disparidades en el Estado de Salud , Dióxido de Nitrógeno , Humanos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Pueblos del Este de Asia , Exposición a Riesgos Ambientales/análisis , Óxido Nítrico , Dióxido de Nitrógeno/análisis , Material Particulado/análisis
10.
Nature ; 543(7647): 705-709, 2017 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-28358094

RESUMEN

Millions of people die every year from diseases caused by exposure to outdoor air pollution. Some studies have estimated premature mortality related to local sources of air pollution, but local air quality can also be affected by atmospheric transport of pollution from distant sources. International trade is contributing to the globalization of emission and pollution as a result of the production of goods (and their associated emissions) in one region for consumption in another region. The effects of international trade on air pollutant emissions, air quality and health have been investigated regionally, but a combined, global assessment of the health impacts related to international trade and the transport of atmospheric air pollution is lacking. Here we combine four global models to estimate premature mortality caused by fine particulate matter (PM2.5) pollution as a result of atmospheric transport and the production and consumption of goods and services in different world regions. We find that, of the 3.45 million premature deaths related to PM2.5 pollution in 2007 worldwide, about 12 per cent (411,100 deaths) were related to air pollutants emitted in a region of the world other than that in which the death occurred, and about 22 per cent (762,400 deaths) were associated with goods and services produced in one region for consumption in another. For example, PM2.5 pollution produced in China in 2007 is linked to more than 64,800 premature deaths in regions other than China, including more than 3,100 premature deaths in western Europe and the USA; on the other hand, consumption in western Europe and the USA is linked to more than 108,600 premature deaths in China. Our results reveal that the transboundary health impacts of PM2.5 pollution associated with international trade are greater than those associated with long-distance atmospheric pollutant transport.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire/efectos adversos , Contaminación del Aire/estadística & datos numéricos , Comercio/estadística & datos numéricos , Internacionalidad , Mortalidad Prematura , Material Particulado/efectos adversos , Contaminantes Atmosféricos/análisis , Atmósfera/química , China/epidemiología , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Europa (Continente)/epidemiología , Salud Global , Humanos , Material Particulado/análisis , Salud Pública , Estados Unidos/epidemiología , Viento
11.
Int J Gynecol Cancer ; 33(9): 1419-1426, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37094966

RESUMEN

OBJECTIVE: The prognosis of patients with advanced stage mucinous epithelial ovarian cancer remains poor due to a modest response to platinum-based chemotherapy and the absence of therapeutic alternatives. As targeted approaches may help to overcome these limitations, the present study evaluates biomarkers indicative of potential immune-checkpoint inhibitor therapy response. METHODS: All patients who underwent primary cytoreductive surgery from January 2001 to December 2020 and for whom formalin-fixed paraffin-embedded tissue samples were available were included (n=35; 12 International Federation of Gynecology and Obstetrics (FIGO) stage ≥IIb). To define sub-groups potentially suitable for checkpoint inhibition, expression of programmed death-ligand 1 (PD-L1), tumor-infiltrating lymphocytes (CD3+, CD8+, CD20+, CD45+, CD68+, FoxP3+), and AT-rich interactive domain-containing protein 1A (ARID1A) immunostaining were evaluated in whole tissue sections and compared with clinicopathologic parameters and next-generation sequencing results, where available (n=11). Survival analyses were performed to assess whether identified sub-groups were associated with specific clinical outcomes. RESULTS: In total, 34.3% (n=12/35) of tumors were PD-L1 positive. PD-L1 expression was associated with infiltrative histotype (p=0.027) and correlated with higher CD8+ (r=0.577, p<0.001) and CD45+ (r=0.424, p=0.011), but reduced ARID1A expression (r=-4.39, p=0.008). CD8+ expression was associated with longer progression-free survival (hazard ratio (HR) 0.85 (95% CI 0.72 to 0.99), p=0.047) and disease-specific survival (HR 0.85 (95% CI 0.73 to 1.00), p=0.044) in the sub-group with FIGO stage ≥IIb. Three (8.6%) samples demonstrated high PD-L1 expression at a combined positive score of >10, which was associated with increased CD8+ expression (p=0.010) and loss of ARID1A expression (p=0.034). Next-generation sequencing, which was available for all samples with a combined positive score of >10, showed KRAS mutations, BRCA wild-type status, and mismatch repair proficiency in all cases, but did not reveal genetic alterations potentially associated with a pro-immunogenic tumor environment. CONCLUSIONS: A sub-group of mucinous ovarian cancers appear to demonstrate a pro-immunogenic tumor environment with high PD-L1 expression, decreased ARID1A expression, and characteristic tumor-infiltrating lymphocyte infiltration patterns. Further clinical validation of anti-PD-L1/PD-1 targeting in selected mucinous ovarian cancers appears promising.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Ováricas , Humanos , Femenino , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/patología , Pronóstico , Análisis de Supervivencia , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Neoplasias Ováricas/genética , Linfocitos Infiltrantes de Tumor , Linfocitos T CD8-positivos/patología
12.
Mol Cell ; 55(1): 31-46, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24882211

RESUMEN

MutS protein homolog 2 (MSH2) is a key DNA mismatch repair protein. It forms the MSH2-MSH6 (MutSα) and MSH2-MSH3 (MutSß) heterodimers, which help to ensure genomic integrity. MutSα not only recognizes and repairs mismatched nucleotides but also recognizes DNA adducts induced by DNA-damaging agents, and triggers cell-cycle arrest and apoptosis. Loss or depletion of MutSα from cells leads to microsatellite instability (MSI) and resistance to DNA damage. Although the level of MutSα can be reduced by the ubiquitin-proteasome pathway, the detailed mechanisms of this regulation remain elusive. Here we report that histone deacetylase 6 (HDAC6) sequentially deacetylates and ubiquitinates MSH2, leading to MSH2 degradation. In addition, HDAC6 significantly reduces cellular sensitivity to DNA-damaging agents and decreases cellular DNA mismatch repair activities by downregulation of MSH2. Overall, these findings reveal a mechanism by which proper levels of MutSα are maintained.


Asunto(s)
Histona Desacetilasas/fisiología , Proteína 2 Homóloga a MutS/metabolismo , Acetilación , Animales , Células Cultivadas , Células HEK293 , Células HeLa , Histona Desacetilasa 6 , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Ratones , Estabilidad Proteica , Ubiquitinación
13.
Proc Natl Acad Sci U S A ; 116(35): 17193-17200, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31405979

RESUMEN

In recent years, air pollution has caused more than 1 million deaths per year in China, making it a major focus of public health efforts. However, future climate change may exacerbate such human health impacts by increasing the frequency and duration of weather conditions that enhance air pollution exposure. Here, we use a combination of climate, air quality, and epidemiological models to assess future air pollution deaths in a changing climate under Representative Concentration Pathway 4.5 (RCP4.5). We find that, assuming pollution emissions and population are held constant at current levels, climate change would adversely affect future air quality for >85% of China's population (∼55% of land area) by the middle of the century, and would increase by 3% and 4% the population-weighted average concentrations of fine particulate matter (PM2.5) and ozone, respectively. As a result, we estimate an additional 12,100 and 8,900 Chinese (95% confidence interval: 10,300 to 13,800 and 2,300 to 14,700, respectively) will die per year from PM2.5 and ozone exposure, respectively. The important underlying climate mechanisms are changes in extreme conditions such as atmospheric stagnation and heat waves (contributing 39% and 6%, respectively, to the increase in mortality). Additionally, greater vulnerability of China's aging population will further increase the estimated deaths from PM2.5 and ozone in 2050 by factors of 1 and 3, respectively. Our results indicate that climate change and more intense extremes are likely to increase the risk of severe pollution events in China. Managing air quality in China in a changing climate will thus become more challenging.


Asunto(s)
Contaminación del Aire , Cambio Climático , Monitoreo del Ambiente , Material Particulado/química , China , Humanos , Material Particulado/efectos adversos
14.
Proc Natl Acad Sci U S A ; 116(49): 24463-24469, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31740599

RESUMEN

From 2013 to 2017, with the implementation of the toughest-ever clean air policy in China, significant declines in fine particle (PM2.5) concentrations occurred nationwide. Here we estimate the drivers of the improved PM2.5 air quality and the associated health benefits in China from 2013 to 2017 based on a measure-specific integrated evaluation approach, which combines a bottom-up emission inventory, a chemical transport model, and epidemiological exposure-response functions. The estimated national population-weighted annual mean PM2.5 concentrations decreased from 61.8 (95%CI: 53.3-70.0) to 42.0 µg/m3 (95% CI: 35.7-48.6) in 5 y, with dominant contributions from anthropogenic emission abatements. Although interannual meteorological variations could significantly alter PM2.5 concentrations, the corresponding effects on the 5-y trends were relatively small. The measure-by-measure evaluation indicated that strengthening industrial emission standards (power plants and emission-intensive industrial sectors), upgrades on industrial boilers, phasing out outdated industrial capacities, and promoting clean fuels in the residential sector were major effective measures in reducing PM2.5 pollution and health burdens. These measures were estimated to contribute to 6.6- (95% CI: 5.9-7.1), 4.4- (95% CI: 3.8-4.9), 2.8- (95% CI: 2.5-3.0), and 2.2- (95% CI: 2.0-2.5) µg/m3 declines in the national PM2.5 concentration in 2017, respectively, and further reduced PM2.5-attributable excess deaths by 0.37 million (95% CI: 0.35-0.39), or 92% of the total avoided deaths. Our study confirms the effectiveness of China's recent clean air actions, and the measure-by-measure evaluation provides insights into future clean air policy making in China and in other developing and polluting countries.

15.
Faraday Discuss ; 226: 584-606, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33237081

RESUMEN

China is currently in a crucial stage of air pollution control and has intensive clean air policies. Past strict policies have demonstrated remarkable effectiveness in emission control and fine particulate matter (PM2.5) pollution mitigation; however, it is not clear what the continuous benefits of current policies are for the future. Here, we summarize China's currently implemented, released, and upcoming clean air policies and estimate the air quality and health benefits of the implementation of these policies until 2030. We found that China's current and upcoming clean air policies could reduce major pollutant emissions by 14.3-70.5% under continued socio-economic growth from 2010 to 2030. These policies could decrease the national population-weighted PM2.5 concentrations from 61.6 µg m-3 in 2010 to 26.4 µg m-3 in 2030 (57.2% reduction). These air quality improvements will ensure that over 80% of the population lives in areas with PM2.5 levels below the current annual PM2.5 air quality standard (i.e., 35 µg m-3) and will avoid 95.0 (95% CI, 76.3, 104.2) thousand premature deaths in 2030. We also point out several inadequacies of current clean air policies, suggesting that more ambitious control actions are needed to better protect public health with an increasing ageing population. Our findings could provide quantitative insights that can be used to better address air pollution issues in China and other developing countries.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , China , Material Particulado/análisis , Políticas
16.
Environ Sci Technol ; 55(17): 12106-12115, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34407614

RESUMEN

Air pollution has altered the Earth's radiation balance, disturbed the ecosystem, and increased human morbidity and mortality. Accordingly, a full-coverage high-resolution air pollutant data set with timely updates and historical long-term records is essential to support both research and environmental management. Here, for the first time, we develop a near real-time air pollutant database known as Tracking Air Pollution in China (TAP, http://tapdata.org.cn/) that combines information from multiple data sources, including ground observations, satellite aerosol optical depth (AOD), operational chemical transport model simulations, and other ancillary data such as meteorological fields, land use data, population, and elevation. Daily full-coverage PM2.5 data at a spatial resolution of 10 km is our first near real-time product. The TAP PM2.5 is estimated based on a two-stage machine learning model coupled with the synthetic minority oversampling technique and a tree-based gap-filling method. Our model has an averaged out-of-bag cross-validation R2 of 0.83 for different years, which is comparable to those of other studies, but improves its performance at high pollution levels and fills the gaps in missing AOD on daily scale. The full coverage and near real-time updates of the daily PM2.5 data allow us to track the day-to-day variations in PM2.5 concentrations over China in a timely manner. The long-term records of PM2.5 data since 2000 will also support policy assessments and health impact studies. The TAP PM2.5 data are publicly available through our website for sharing with the research and policy communities.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , China , Ecosistema , Monitoreo del Ambiente , Humanos , Material Particulado/análisis
17.
Lung ; 199(6): 639-651, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34800156

RESUMEN

PURPOSE: Previous studies have confirmed that patients with obstructive sleep apnea (OSA) have higher systemic inflammatory markers, including intercellular adhesion molecule-1(ICAM-1), vascular cell adhesion molecule-1(VCAM-1), and E-selectin compared to control subjects. However, the effects of continuous positive airway pressure (CPAP) therapy on circulating levels of ICAM-1, VCAM-1, and E-selectin in OSA patients remain inconsistent. Therefore, the primary purpose of the present meta-analysis is to estimate the effect of CPAP therapy on these cell adhesion molecules (CAMs) in patients with OSA. METHODS: The PubMed, Scopus, Embase, and Cochrane Library databases were searched. The overall effects were measured by the standardized mean difference (SMD) with a 95% confidence interval (CI). A random effects model or a fixed-effects model was used, depending on the heterogeneity of the studies. RESULTS: A total of 11 studies were included, comprising 650 OSA patients. The pooled results showed that CPAP therapy significantly decreased ICAM-1 (SMD = - 0.283, 95% CI - 0.464 to - 0.101, p = 0.002) and E-selectin levels (SMD = - 0.349, 95% CI - 0.566 to - 0.133, p = 0.002). In contrast, there was no significant improvement of VCAM-1 levels after CPAP treatment (SMD = - 0.160, 95% CI - 0.641 to 0.320, p = 0.513). CONCLUSIONS: Our meta-analysis demonstrated that CPAP treatment significantly decreased the circulating levels of ICAM-1 and E-selectin in OSA patients. Thus, ICAM-1 and E-selectin may be effective markers to evaluate CPAP therapy for reducing OSA cardiovascular risk in clinical practice.


Asunto(s)
Presión de las Vías Aéreas Positiva Contínua , Apnea Obstructiva del Sueño , Biomarcadores , Moléculas de Adhesión Celular , Humanos , Apnea Obstructiva del Sueño/terapia , Molécula 1 de Adhesión Celular Vascular
18.
Int J Mol Sci ; 23(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35008598

RESUMEN

BACKGROUND: Ovarian cancer (OC) is one of the most lethal cancers in women. The active form of vitamin D3, 1,25-dihydroxyvitamin D3 (1,25D3, calcitriol) has anticancer activity in several cancers, including ovarian cancer, but the required pharmacological doses may cause hypercalcemia. We hypothesized that newly developed, low calcemic, vitamin D analogs (an1,25Ds) may be used as anticancer agents instead of calcitriol in ovarian cancer cells. METHODS: We used two patient-derived high-grade serous ovarian cancer (HGSOC) cell lines with low (13781) and high (14433) mRNA expression levels of the gene encoding 1,25-dihydroxyvitamin D3 24-hydroxylase CYP24A1, one of the main target genes of calcitriol. We tested the effect of calcitriol and four structurally related series of an1,25Ds (PRI-1906, PRI-1907, PRI-5201, PRI-5202) on cell number, viability, the expression of CYP24A1, and the vitamin D receptor (VDR). RESULTS: CYP24A1 mRNA expression increased in a concentration-dependent manner after treatment with all compounds. In both cell lines, after 4 h, PRI-5202 was the most potent analog (in 13781 cells: EC50 = 2.98 ± 1.10 nmol/L, in 14433 cells: EC50 = 0.92 ± 0.20 nmol/L), while PRI-1907 was the least active one (in 13781 cells: EC50 = n/d, in 14433 cells: EC50 = n/d). This difference among the analogs disappeared after 5 days of treatment. The 13781 cells were more sensitive to the an1,25Ds compared with 14433 cells. The an1,25Ds increased nuclear VDR levels and reduced cell viability, but only in the 13781 cell line. CONCLUSIONS: The an1,25Ds had different potencies in the HGSOC cell lines and their efficacy in increasing CYP24A1 expression was cell line- and chemical structure-dependent. Therefore, choosing sensitive cancer cell lines and further optimization of the analogs' structure might lead to new treatment options against ovarian cancer.


Asunto(s)
Supervivencia Celular , Neoplasias Ováricas/tratamiento farmacológico , Receptores de Calcitriol/genética , Vitamina D3 24-Hidroxilasa/genética , Vitamina D/farmacología , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Células Cultivadas , Ergocalciferoles/metabolismo , Ergocalciferoles/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Ováricas/enzimología , Neoplasias Ováricas/metabolismo , Vitamina D/análogos & derivados
19.
Circulation ; 140(11): 921-936, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31220931

RESUMEN

BACKGROUND: Polycystin-1 (PC1) is a transmembrane protein originally identified in autosomal dominant polycystic kidney disease where it regulates the calcium-permeant cation channel polycystin-2. Autosomal dominant polycystic kidney disease patients develop renal failure, hypertension, left ventricular hypertrophy, and diastolic dysfunction, among other cardiovascular disorders. These individuals harbor PC1 loss-of-function mutations in their cardiomyocytes, but the functional consequences are unknown. PC1 is ubiquitously expressed, and its experimental ablation in cardiomyocyte-specific knockout mice reduces contractile function. Here, we set out to determine the pathophysiological role of PC1 in cardiomyocytes. METHODS: Wild-type and cardiomyocyte-specific PC1 knockout mice were analyzed by echocardiography. Excitation-contraction coupling was assessed in isolated cardiomyocytes and human embryonic stem cell-derived cardiomyocytes, and functional consequences were explored in heterologous expression systems. Protein-protein interactions were analyzed biochemically and by means of ab initio calculations. RESULTS: PC1 ablation reduced action potential duration in cardiomyocytes, decreased Ca2+ transients, and myocyte contractility. PC1-deficient cardiomyocytes manifested a reduction in sarcoendoplasmic reticulum Ca2+ stores attributable to a reduced action potential duration and sarcoendoplasmic reticulum Ca2+ ATPase (SERCA) activity. An increase in outward K+ currents decreased action potential duration in cardiomyocytes lacking PC1. Overexpression of full-length PC1 in HEK293 cells significantly reduced the current density of heterologously expressed Kv4.3, Kv1.5 and Kv2.1 potassium channels. PC1 C terminus inhibited Kv4.3 currents to the same degree as full-length PC1. Additionally, PC1 coimmunoprecipitated with Kv4.3, and a modeled PC1 C-terminal structure suggested the existence of 2 docking sites for PC1 within the N terminus of Kv4.3, supporting a physical interaction. Finally, a naturally occurring human mutant PC1R4228X manifested no suppressive effects on Kv4.3 channel activity. CONCLUSIONS: Our findings uncover a role for PC1 in regulating multiple Kv channels, governing membrane repolarization and alterations in SERCA activity that reduce cardiomyocyte contractility.


Asunto(s)
Potenciales de Acción/fisiología , Miocitos Cardíacos/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Canales Catiónicos TRPP/deficiencia , Animales , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Canales Catiónicos TRPP/genética
20.
Circ Res ; 122(6): e20-e33, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29362227

RESUMEN

RATIONALE: The regulator of calcineurin 1 (RCAN1) inhibits CN (calcineurin), a Ca2+-activated protein phosphatase important in cardiac remodeling. In humans, RCAN1 is located on chromosome 21 in proximity to the Down syndrome critical region. The hearts and brains of Rcan1 KO mice are more susceptible to damage from ischemia/reperfusion (I/R); however, the underlying cause is not known. OBJECTIVE: Mitochondria are key mediators of I/R damage. The goal of these studies was to determine the impact of RCAN1 on mitochondrial dynamics and function. METHODS AND RESULTS: Using both neonatal and isolated adult cardiomyocytes, we show that, when RCAN1 is depleted, the mitochondrial network is more fragmented because of increased CN-dependent activation of the fission protein, DRP1 (dynamin-1-like). Mitochondria in RCAN1-depleted cardiomyocytes have reduced membrane potential, O2 consumption, and generation of reactive oxygen species, as well as a reduced capacity for mitochondrial Ca2+ uptake. RCAN1-depleted cardiomyocytes were more sensitive to I/R; however, pharmacological inhibition of CN, DRP1, or CAPN (calpains; Ca2+-activated proteases) restored protection, suggesting that in the absence of RCAN1, CAPN-mediated damage after I/R is greater because of a decrease in the capacity of mitochondria to buffer cytoplasmic Ca2+. Increasing RCAN1 levels by adenoviral infection was sufficient to enhance fusion and confer protection from I/R. To examine the impact of more modest, and biologically relevant, increases in RCAN1, we compared the mitochondrial network in induced pluripotent stem cells derived from individuals with Down syndrome to that of isogenic, disomic controls. Mitochondria were more fused, and O2 consumption was greater in the trisomic induced pluripotent stem cells; however, coupling efficiency and metabolic flexibility were compromised compared with disomic induced pluripotent stem cells. Depletion of RCAN1 from trisomic induced pluripotent stem cells was sufficient to normalize mitochondrial dynamics and function. CONCLUSIONS: RCAN1 helps maintain a more interconnected mitochondrial network, and maintaining appropriate RCAN1 levels is important to human health and disease.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Mitocondrias Cardíacas/metabolismo , Dinámicas Mitocondriales , Proteínas Musculares/genética , Daño por Reperfusión Miocárdica/genética , Animales , Proteínas de Unión al Calcio , Calpaína/genética , Calpaína/metabolismo , Línea Celular , Células Cultivadas , Dinaminas/genética , Dinaminas/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Daño por Reperfusión Miocárdica/metabolismo , Oxígeno/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA