Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecol Evol ; 10(20): 11155-11168, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33144956

RESUMEN

AIM: Climatic changes throughout the Pleistocene have strongly modified species distributions. We examine how these range shifts have affected the genetic diversity of a montane butterfly species and whether the genetic diversity in the extant populations is threatened by future climate change. LOCATION: Europe. TAXON: Erebia epiphron Lepidoptera: Nymphalidae. METHODS: We analyzed mtDNA to map current genetic diversity and differentiation of E. epiphron across Europe to identify population refugia and postglacial range shifts. We used species distribution modeling (SDM) to hindcast distributions over the last 21,000 years to identify source locations of extant populations and to project distributions into the future (2070) to predict potential losses in genetic diversity. RESULTS: We found substantial genetic diversity unique to specific regions within Europe (total number of haplotypes = 31, number of unique haplotypes = 27, H d = 0.9). Genetic data and SDM hindcasting suggest long-term separation and survival of discrete populations. Particularly, high rates of unique diversity in postglacially colonized sites in England (H d = 0.64) suggest this population was colonized from a now extinct cryptic refugium. Under future climate change, SDMs predict loss of climate suitability for E. epiphron, particularly at lower elevations (<1,000 meters above sea level) equating to 1 to 12 unique haplotypes being at risk under climate scenarios projecting 1°C and 2-3°C increases respectfully in global temperature by 2070. MAIN CONCLUSIONS: Our results suggest that historical range expansion and retraction processes by a cold-adapted mountain species caused diversification between populations, resulting in unique genetic diversity which may be at risk if distributions of cold-adapted species shrink in future. Assisted colonizations of individuals from at-risk populations into climatically suitable unoccupied habitat might help conserve unique genetic diversity, and translocations into remaining populations might increase their genetic diversity and hence their ability to adapt to future climate change.

2.
Rev. biol. trop ; 48(4): 983-988, Dec. 2000.
Artículo en Inglés | LILACS | ID: lil-320108

RESUMEN

We determined the size characteristics of foragers of the leaf-cutting ant Atta sexdens in a mature eucalyptus forest in Campos dos Goytacazes, Rio de Janeiro State, Brazil, at daytime (7:30 to 10:00 hr) and nighttime (19:00 to 23:00 hr). There were no significant differences between daytime and nighttime ant mass (Ma), but leaf fragment mass (Ml) and burden (B = [Ma + Ml]/Ma), which indicates relative load capacity, were significantly greater at daytime. There was a positive linear relationship between Ma and Ml for the combined daytime and nighttime data, and increases in Ma resulted in lower B. We compared A. sexdens characteristics with published results for Atta cephalotes, a closely related species. A. sexdens is larger and therefore able to carry heavier loads, but its burden is about 72 of the average value for A. cephalotes. We suggest that the lower load capacity of A. sexdens in comparison to A. cephalotes is related to its relatively larger size.


Asunto(s)
Animales , Hormigas , Constitución Corporal , Eucalyptus , Hojas de la Planta , Plantas Medicinales , Brasil , Esfuerzo Físico , Soporte de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA