Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
MRS Bull ; 48(5): 531-546, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37476355

RESUMEN

Electrophysiological recording and stimulation are the gold standard for functional mapping during surgical and therapeutic interventions as well as capturing cellular activity in the intact human brain. A critical component probing human brain activity is the interface material at the electrode contact that electrochemically transduces brain signals to and from free charge carriers in the measurement system. Here, we summarize state-of-the-art electrode array systems in the context of translation for use in recording and stimulating human brain activity. We leverage parametric studies with multiple electrode materials to shed light on the varied levels of suitability to enable high signal-to-noise electrophysiological recordings as well as safe electrophysiological stimulation delivery. We discuss the effects of electrode scaling for recording and stimulation in pursuit of high spatial resolution, channel count electrode interfaces, delineating the electrode-tissue circuit components that dictate the electrode performance. Finally, we summarize recent efforts in the connectorization and packaging for high channel count electrode arrays and provide a brief account of efforts toward wireless neuronal monitoring systems.

2.
Adv Funct Mater ; 32(8)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35603230

RESUMEN

We report innovative scalable, vertical, ultra-sharp nanowire arrays that are individually addressable to enable long-term, native recordings of intracellular potentials. Stable amplitudes of intracellular potentials from 3D tissue-like networks of neurons and cardiomyocytes are obtained. Individual electrical addressability is necessary for high-fidelity intracellular electrophysiological recordings. This study paves the way toward predictive, high-throughput, and low-cost electrophysiological drug screening platforms.

3.
Adv Funct Mater ; 32(25)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-36381629

RESUMEN

The Utah array powers cutting-edge projects for restoration of neurological function, such as BrainGate, but the underlying electrode technology has itself advanced little in the last three decades. Here, advanced dual-side lithographic microfabrication processes is exploited to demonstrate a 1024-channel penetrating silicon microneedle array (SiMNA) that is scalable in its recording capabilities and cortical coverage and is suitable for clinical translation. The SiMNA is the first penetrating microneedle array with a flexible backing that affords compliancy to brain movements. In addition, the SiMNA is optically transparent permitting simultaneous optical and electrophysiological interrogation of neuronal activity. The SiMNA is used to demonstrate reliable recordings of spontaneous and evoked field potentials and of single unit activity in chronically implanted mice for up to 196 days in response to optogenetic and to whisker air-puff stimuli. Significantly, the 1024-channel SiMNA establishes detailed spatiotemporal mapping of broadband brain activity in rats. This novel scalable and biocompatible SiMNA with its multimodal capability and sensitivity to broadband brain activity will accelerate the progress in fundamental neurophysiological investigations and establishes a new milestone for penetrating and large area coverage microelectrode arrays for brain-machine interfaces.

4.
J Neurosci Res ; 99(10): 2625-2645, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34212416

RESUMEN

The homeodomain transcription factors sine oculis homeobox 3 (Six3) and ventral anterior homeobox 1 (Vax1) are required for brain development. Their expression in specific brain areas is maintained in adulthood, where their functions are poorly understood. To identify the roles of Six3 and Vax1 in neurons, we conditionally deleted each gene using Synapsincre , a promoter targeting maturing neurons, and generated Six3syn and Vax1syn mice. Six3syn and Vax1syn females, but not males, had reduced fertility, due to impairment of the luteinizing hormone (LH) surge driving ovulation. In nocturnal rodents, the LH surge requires a precise timing signal from the brain's circadian pacemaker, the suprachiasmatic nucleus (SCN), near the time of activity onset. Indeed, both Six3syn and Vax1syn females had impaired rhythmic SCN output, which was associated with weakened Period 2 molecular clock function in both Six3syn and Vax1syn mice. These impairments were associated with a reduction of the SCN neuropeptide vasoactive intestinal peptide in Vax1syn mice and a modest weakening of SCN timekeeping function in both Six3syn and Vax1syn mice. Changes in SCN function were associated with mistimed peak PER2::LUC expression in the SCN and pituitary in both Six3syn and Vax1syn females. Interestingly, Six3syn ovaries presented reduced sensitivity to LH, causing reduced ovulation during superovulation. In conclusion, we have identified novel roles of the homeodomain transcription factors SIX3 and VAX1 in neurons, where they are required for proper molecular circadian clock function, SCN rhythmic output, and female fertility.


Asunto(s)
Ritmo Circadiano/fisiología , Proteínas del Ojo/metabolismo , Fertilidad/fisiología , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuropéptidos/metabolismo , Carrera/fisiología , Núcleo Supraquiasmático/metabolismo , Animales , Proteínas del Ojo/genética , Femenino , Proteínas de Homeodominio/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células 3T3 NIH , Proteínas del Tejido Nervioso/genética , Neuropéptidos/genética , Proteína Homeobox SIX3
5.
J Neurosci ; 36(5): 1669-81, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26843648

RESUMEN

The ventrolateral periaqueductal gray (vlPAG) is a key structure in the descending pain modulatory circuit. Activation of the circuit occurs via disinhibition of GABAergic inputs onto vlPAG output neurons. In these studies, we tested the hypothesis that GABAergic inhibition is increased during persistent inflammation, dampening activation of the descending circuit from the vlPAG. Our results indicate that persistent inflammation induced by Complete Freund's adjuvant (CFA) modulates GABA signaling differently in male and female rats. CFA treatment results in increased presynaptic GABA release but decreased high-affinity tonic GABAA currents in female vlPAG neurons. These effects are not observed in males. The tonic currents in the vlPAG are dependent on GABA transporter activity and are modulated by agonists that activate GABAA receptors containing the δ subunit. The GABAA δ agonist THIP (gaboxadol) induced similar amplitude currents in naive and CFA-treated rats. In addition, a positive allosteric modulator of the GABAA δ subunit, DS2 (4-chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridin-3-yl]benzamide), increased tonic currents. These results indicate that GABAA δ receptors remain on the cell surface but are less active in CFA-treated female rats. In vivo behavior studies showed that morphine induced greater antinociception in CFA-treated females that was reversed with microinjections of DS2 directly into the vlPAG. DS2 did not affect morphine antinociception in naive or CFA-treated male rats. Together, these data indicate that sex-specific adaptations in GABAA receptor signaling modulate opioid analgesia in persistent inflammation. Antagonists of GABAA δ receptors may be a viable strategy for reducing pain associated with persistent inflammation, particularly in females. SIGNIFICANCE STATEMENT: These studies demonstrate that GABA signaling is modulated in the ventrolateral periaqueductal gray by persistent inflammation differently in female and male rats. Our results indicate that antagonists or negative allosteric modulators of GABAA δ receptors may be an effective strategy to alleviate chronic inflammatory pain and promote opioid antinociception, especially in females.


Asunto(s)
Dolor Crónico/fisiopatología , Sustancia Gris Periacueductal/fisiología , Receptores de GABA-A/fisiología , Caracteres Sexuales , Transducción de Señal/fisiología , Animales , Dolor Crónico/etiología , Relación Dosis-Respuesta a Droga , Femenino , Agonistas del GABA/farmacología , Calor/efectos adversos , Inflamación/patología , Inflamación/fisiopatología , Masculino , Dimensión del Dolor/efectos de los fármacos , Dimensión del Dolor/métodos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Ácido gamma-Aminobutírico/farmacología
6.
Sci Transl Med ; 16(744): eadj7257, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38657026

RESUMEN

Functional mapping during brain surgery is applied to define brain areas that control critical functions and cannot be removed. Currently, these procedures rely on verbal interactions between the neurosurgeon and electrophysiologist, which can be time-consuming. In addition, the electrode grids that are used to measure brain activity and to identify the boundaries of pathological versus functional brain regions have low resolution and limited conformity to the brain surface. Here, we present the development of an intracranial electroencephalogram (iEEG)-microdisplay that consists of freestanding arrays of 2048 GaN light-emitting diodes laminated on the back of micro-electrocorticography electrode grids. With a series of proof-of-concept experiments in rats and pigs, we demonstrate that these iEEG-microdisplays allowed us to perform real-time iEEG recordings and display cortical activities by spatially corresponding light patterns on the surface of the brain in the surgical field. Furthermore, iEEG-microdisplays allowed us to identify and display cortical landmarks and pathological activities from rat and pig models. Using a dual-color iEEG-microdisplay, we demonstrated coregistration of the functional cortical boundaries with one color and displayed the evolution of electrical potentials associated with epileptiform activity with another color. The iEEG-microdisplay holds promise to facilitate monitoring of pathological brain activity in clinical settings.


Asunto(s)
Encéfalo , Electroencefalografía , Animales , Encéfalo/fisiología , Electroencefalografía/métodos , Porcinos , Ratas , Neuronas/fisiología , Mapeo Encefálico/métodos , Ratas Sprague-Dawley , Electrocorticografía/métodos , Masculino
7.
J Neurosurg ; 140(3): 665-676, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37874692

RESUMEN

OBJECTIVE: The study objective was to evaluate intraoperative experience with newly developed high-spatial-resolution microelectrode grids composed of poly(3,4-ethylenedioxythiophene) with polystyrene sulfonate (PEDOT:PSS), and those composed of platinum nanorods (PtNRs). METHODS: A cohort of patients who underwent craniotomy for pathological tissue resection and who had high-spatial-resolution microelectrode grids placed intraoperatively were evaluated. Patient demographic and baseline clinical variables as well as relevant microelectrode grid characteristic data were collected. The primary and secondary outcome measures of interest were successful microelectrode grid utilization with usable resting-state or task-related data, and grid-related adverse intraoperative events and/or grid dysfunction. RESULTS: Included in the analysis were 89 cases of patients who underwent a craniotomy for resection of neoplasms (n = 58) or epileptogenic tissue (n = 31). These cases accounted for 94 grids: 58 PEDOT:PSS and 36 PtNR grids. Of these 94 grids, 86 were functional and used successfully to obtain cortical recordings from 82 patients. The mean cortical grid recording duration was 15.3 ± 1.15 minutes. Most recordings in patients were obtained during experimental tasks (n = 52, 58.4%), involving language and sensorimotor testing paradigms, or were obtained passively during resting state (n = 32, 36.0%). There were no intraoperative adverse events related to grid placement. However, there were instances of PtNR grid dysfunction (n = 8) related to damage incurred by suboptimal preoperative sterilization (n = 7) and improper handling (n = 1); intraoperative recordings were not performed. Vaporized peroxide sterilization was the most optimal sterilization method for PtNR grids, providing a significantly greater number of usable channels poststerilization than did steam-based sterilization techniques (median 905.0 [IQR 650.8-935.5] vs 356.0 [IQR 18.0-597.8], p = 0.0031). CONCLUSIONS: High-spatial-resolution microelectrode grids can be readily incorporated into appropriately selected craniotomy cases for clinical and research purposes. Grids are reliable when preoperative handling and sterilization considerations are accounted for. Future investigations should compare the diagnostic utility of these high-resolution grids to commercially available counterparts and assess whether diagnostic discrepancies relate to clinical outcomes.


Asunto(s)
Sistemas de Computación , Craneotomía , Humanos , Microelectrodos , Lenguaje , Peróxidos
8.
Nat Commun ; 15(1): 218, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233418

RESUMEN

Over the past decade, stereotactically placed electrodes have become the gold standard for deep brain recording and stimulation for a wide variety of neurological and psychiatric diseases. Current electrodes, however, are limited in their spatial resolution and ability to record from small populations of neurons, let alone individual neurons. Here, we report on an innovative, customizable, monolithically integrated human-grade flexible depth electrode capable of recording from up to 128 channels and able to record at a depth of 10 cm in brain tissue. This thin, stylet-guided depth electrode is capable of recording local field potentials and single unit neuronal activity (action potentials), validated across species. This device represents an advance in manufacturing and design approaches which extends the capabilities of a mainstay technology in clinical neurology.


Asunto(s)
Encéfalo , Neuronas , Humanos , Encéfalo/fisiología , Electrodos , Potenciales de Acción/fisiología , Neuronas/fisiología , Electrodos Implantados
9.
Am J Physiol Endocrinol Metab ; 305(11): E1384-97, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24105416

RESUMEN

Kisspeptin (Kiss1) neurons in the rostral periventricular area of the third ventricle (RP3V) provide excitatory drive to gonadotropin-releasing hormone (GnRH) neurons to control fertility. Using whole cell patch clamp recording and single-cell (sc)RT-PCR techniques targeting Kiss1-CreGFP or tyrosine hydroxylase (TH)-EGFP neurons, we characterized the biophysical properties of these neurons and identified the critical intrinsic properties required for burst firing in 17ß-estradiol (E2)-treated, ovariectomized female mice. One-fourth of the RP3V Kiss1 neurons exhibited spontaneous burst firing. RP3V Kiss1 neurons expressed a hyperpolarization-activated h-current (Ih) and a T-type calcium current (IT), which supported hyperpolarization-induced rebound burst firing. Under voltage clamp conditions, all Kiss1 neurons expressed a kinetically fast Ih that was augmented 3.4-fold by high (LH surge-producing)-E2 treatment. scPCR analysis of Kiss1 neurons revealed abundant expression of the HCN1 channel transcripts. Kiss1 neurons also expressed a Ni(2+)- and TTA-P2-sensitive IT that was augmented sixfold with high-E2 treatment. CaV3.1 mRNA was also highly expressed in these cells. Current clamp analysis revealed that rebound burst firing was induced in RP3V Kiss1 neurons in high-E2-treated animals, and the majority of Kiss1 neurons had a hyperpolarization threshold of -84.7 mV, which corresponded to the V½ for IT de-inactivation. Finally, Kiss1 neurons in the RP3V were hyperpolarized by µ- and κ-opioid and GABAB receptor agonists, suggesting that these pathways also contribute to rebound burst firing. Therefore, Kiss1 neurons in the RP3V express the critical channels and receptors that permit E2-dependent rebound burst firing and provide the biophysical substrate that drives the preovulatory surge of GnRH.


Asunto(s)
Estradiol/farmacología , Kisspeptinas/metabolismo , Neuronas/fisiología , Área Preóptica/metabolismo , Animales , Femenino , Fase Folicular/efectos de los fármacos , Fase Folicular/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Kisspeptinas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/efectos de los fármacos , Ovariectomía , Área Preóptica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Tercer Ventrículo/efectos de los fármacos , Tercer Ventrículo/metabolismo
10.
Oper Neurosurg (Hagerstown) ; 24(1): 80-87, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36519881

RESUMEN

BACKGROUND: Systematic use of neurosurgical training simulators across institutions is significantly hindered by logistical and financial constraints. OBJECTIVE: To evaluate feasibility of large-scale implementation of an intraoperative catastrophe simulation, we introduced a highly portable and low-cost immersive neurosurgical simulator into a nationwide curriculum for neurosurgery residents, during years 2016 to 2019. METHODS: The simulator was deployed at 9 Society of Neurological Surgeons junior resident courses and a Congress of Neurological Surgeons education course for a cohort of 526 residents. Heart rate was tracked to monitor physiological responses to simulated stress. Experiential survey data were collected to evaluate simulator fidelity and resident attitudes toward simulation. RESULTS: Residents rated the simulator positively with a statistically significant increase in satisfaction over time accompanying refinements in the simulator model and clinical scenario. The simulated complications induced stress-related tachycardia in most participants (n = 249); however, a cohort of participants was identified that experienced significant bradycardia (n = 24) in response to simulated stress. CONCLUSION: Incorporation of immersive neurosurgical simulation into the US national curriculum is logistically feasible and cost-effective for neurosurgical learners. Participant surveys and physiological data suggest that the simulation model recreates the situational physiological stress experienced during practice in the live clinical environment. Simulation may provide an opportunity to identify trainees with maladaptive responses to operative stress who could benefit from additional simulated exposure to mitigate stress impacts on performance.


Asunto(s)
Internado y Residencia , Neurocirugia , Humanos , Neurocirugia/educación , Curriculum , Evaluación Educacional , Satisfacción Personal
11.
bioRxiv ; 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37503216

RESUMEN

Brain surgeries are among the most delicate clinical procedures and must be performed with the most technologically robust and advanced tools. When such surgical procedures are performed in functionally critical regions of the brain, functional mapping is applied as a standard practice that involves direct coordinated interactions between the neurosurgeon and the clinical neurology electrophysiology team. However, information flow during these interactions is commonly verbal as well as time consuming which in turn increases the duration and cost of the surgery, possibly compromising the patient outcomes. Additionally, the grids that measure brain activity and identify the boundaries of pathological versus functional brain regions suffer from low resolution (3-10 mm contact to contact spacing) with limited conformity to the brain surface. Here, we introduce a brain intracranial electroencephalogram microdisplay (Brain-iEEG-microdisplay) which conforms to the brain to measure the brain activity and display changes in near real-time (40 Hz refresh rate) on the surface of the brain in the surgical field. We used scalable engineered gallium nitride (GaN) substrates with 6" diameter to fabricate, encapsulate, and release free-standing arrays of up to 2048 GaN light emitting diodes (µLEDs) in polyimide substrates. We then laminated the µLED arrays on the back of micro-electrocorticography (µECoG) platinum nanorod grids (PtNRGrids) and developed hardware and software to perform near real-time intracranial EEG analysis and activation of light patterns that correspond to specific cortical activities. Using the Brain-iEEG-microdisplay, we precisely ideFSntified and displayed important cortical landmarks and pharmacologically induced pathological activities. In the rat model, we identified and displayed individual cortical columns corresponding to individual whiskers and the near real-time evolution of epileptic discharges. In the pig animal model, we demonstrated near real-time mapping and display of cortical functional boundaries using somatosensory evoked potentials (SSEP) and display of responses to direct electrical stimulation (DES) from the surface or within the brain tissue. Using a dual-color Brain-iEEG-microdisplay, we demonstrated co-registration of the functional cortical boundaries with one color and displayed the evolution of electrical potentials associated with epileptiform activity with another color. The Brain-iEEG-microdisplay holds the promise of increasing the efficiency of diagnosis and possibly surgical treatment, thereby reducing the cost and improving patient outcomes which would mark a major advancement in neurosurgery. These advances can also be translated to broader applications in neuro-oncology and neurophysiology.

12.
Front Endocrinol (Lausanne) ; 14: 1269672, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38205198

RESUMEN

Background: The suprachiasmatic nucleus (SCN) within the hypothalamus is a key brain structure required to relay light information to the body and synchronize cell and tissue level rhythms and hormone release. Specific subpopulations of SCN neurons, defined by their peptide expression, regulate defined SCN output. Here we focus on the vasoactive intestinal peptide (VIP) expressing neurons of the SCN. SCN VIP neurons are known to regulate circadian rhythms and reproductive function. Methods: To specifically study SCN VIP neurons, we generated a novel knock out mouse line by conditionally deleting the SCN enriched transcription factor, Ventral Anterior Homeobox 1 (Vax1), in VIP neurons (Vax1Vip; Vax1fl/fl:VipCre). Results: We found that Vax1Vip females presented with lengthened estrous cycles, reduced circulating estrogen, and increased depressive-like behavior. Further, Vax1Vip males and females presented with a shortened circadian period in locomotor activity and ex vivo SCN circadian period. On a molecular level, the shortening of the SCN period was driven, at least partially, by a direct regulatory role of VAX1 on the circadian clock genes Bmal1 and Per2. Interestingly, Vax1Vip females presented with increased expression of arginine vasopressin (Avp) in the paraventricular nucleus, which resulted in increased circulating corticosterone. SCN VIP and AVP neurons regulate the reproductive gonadotropin-releasing hormone (GnRH) and kisspeptin neurons. To determine how the reproductive neuroendocrine network was impacted in Vax1Vip mice, we assessed GnRH sensitivity to a kisspeptin challenge in vivo. We found that GnRH neurons in Vax1Vip females, but not males, had an increased sensitivity to kisspeptin, leading to increased luteinizing hormone release. Interestingly, Vax1Vip males showed a small, but significant increase in total sperm and a modest delay in pubertal onset. Both male and female Vax1Vip mice were fertile and generated litters comparable in size and frequency to controls. Conclusion: Together, these data identify VAX1 in SCN VIP neurons as a neurological overlap between circadian timekeeping, female reproduction, and depressive-like symptoms in mice, and provide novel insight into the role of SCN VIP neurons.


Asunto(s)
Neuropéptidos , Factores de Transcripción , Masculino , Femenino , Animales , Ratones , Péptido Intestinal Vasoactivo , Kisspeptinas/genética , Semen , Núcleo Supraquiasmático , Reproducción , Neuronas , Ritmo Circadiano , Hormona Liberadora de Gonadotropina , Proteínas de Homeodominio
13.
JCI Insight ; 8(3)2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36602867

RESUMEN

Pathogenic SRY-box transcription factor 2 (SOX2) variants typically cause severe ocular defects within a SOX2 disorder spectrum that includes hypogonadotropic hypogonadism. We examined exome-sequencing data from a large, well-phenotyped cohort of patients with idiopathic hypogonadotropic hypogonadism (IHH) for pathogenic SOX2 variants to investigate the underlying pathogenic SOX2 spectrum and its associated phenotypes. We identified 8 IHH individuals harboring heterozygous pathogenic SOX2 variants with variable ocular phenotypes. These variant proteins were tested in vitro to determine whether a causal relationship between IHH and SOX2 exists. We found that Sox2 was highly expressed in the hypothalamus of adult mice and colocalized with kisspeptin 1 (KISS1) expression in the anteroventral periventricular nucleus of adult female mice. In vitro, shRNA suppression of mouse SOX2 protein in Kiss-expressing cell lines increased the levels of human kisspeptin luciferase (hKiss-luc) transcription, while SOX2 overexpression repressed hKiss-luc transcription. Further, 4 of the identified SOX2 variants prevented this SOX2-mediated repression of hKiss-luc. Together, these data suggest that pathogenic SOX2 variants contribute to both anosmic and normosmic forms of IHH, attesting to hypothalamic defects in the SOX2 disorder spectrum. Our study describes potentially novel mechanisms contributing to SOX2-related disease and highlights the necessity of SOX2 screening in IHH genetic evaluation irrespective of associated ocular defects.


Asunto(s)
Hipogonadismo , Adulto , Animales , Femenino , Humanos , Ratones , Heterocigoto , Hipogonadismo/genética , Mutación , Fenotipo , Factores de Transcripción SOXB1/genética
14.
Endocrinology ; 163(2)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34967900

RESUMEN

For billions of years before electric light was invented, life on Earth evolved under the pattern of light during the day and darkness during the night. Through evolution, nearly all organisms internalized the temporal rhythm of Earth's 24-hour rotation and evolved self-sustaining biological clocks with a ~24-hour rhythm. These internal rhythms are called circadian rhythms, and the molecular constituents that generate them are called molecular circadian clocks. Alignment of molecular clocks with the environmental light-dark rhythms optimizes physiology and behavior. This phenomenon is particularly true for reproductive function, in which seasonal breeders use day length information to time yearly changes in fertility. However, it is becoming increasingly clear that light-induced disruption of circadian rhythms can negatively impact fertility in nonseasonal breeders as well. In particular, the luteinizing hormone surge promoting ovulation is sensitive to circadian disruption. In this review, we will summarize our current understanding of the neuronal networks that underlie circadian rhythms and the luteinizing hormone surge.


Asunto(s)
Ritmo Circadiano/fisiología , Hormona Luteinizante/metabolismo , Red Nerviosa/fisiología , Neuronas/fisiología , Animales , Relojes Circadianos , Ritmo Circadiano/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano , Femenino , Hormona Liberadora de Gonadotropina , Hipotálamo , Kisspeptinas , Luz , Masculino , Neuropéptidos/fisiología , Roedores , Núcleo Supraquiasmático/fisiología , Factores de Transcripción/fisiología
15.
Mol Cell Endocrinol ; 546: 111577, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35121076

RESUMEN

The homeodomain transcription factor SIX3 is a known regulator of eye, nose, and forebrain development, and has recently been implicated in female reproduction. Germline heterozygosity of SIX3 is sufficient to cause subfertility, but the cell populations that mediate this role are unknown. The neuropeptide kisspeptin is a critical component of the reproductive axis and plays roles in sexual maturation, ovulation, and the maintenance of gonadotropin secretion. We used Cre-Lox technology to remove Six3 specifically from kisspeptin neurons in mice to test the hypothesis that SIX3 in kisspeptin neurons is required for reproduction. We found that loss of Six3 in kisspeptin neurons causes subfertility and estrous cycle irregularities in females, but no effect in males. Overall, we find that SIX3 expression in kisspeptin neurons is an important contributor to female fertility.


Asunto(s)
Proteínas del Ojo , Proteínas de Homeodominio , Infertilidad , Kisspeptinas , Proteínas del Tejido Nervioso , Neuronas , Animales , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Masculino , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Reproducción/fisiología , Proteína Homeobox SIX3
16.
Front Endocrinol (Lausanne) ; 13: 956169, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992114

RESUMEN

Disruptions to the circadian system alter reproductive capacity, particularly in females. Mice lacking the core circadian clock gene, Bmal1, are infertile and have evidence of neuroendocrine disruption including the absence of the preovulatory luteinizing hormone (LH) surge and enhanced responsiveness to exogenous kisspeptin. Here, we explore the role of Bmal1 in suprachiasmatic nucleus (SCN) neuron populations known to project to the neuroendocrine axis. We generated four mouse lines using Cre/Lox technology to create conditional deletion of Bmal1 in arginine vasopressin (Bmal1fl/fl:Avpcre ), vasoactive intestinal peptide (Bmal1fl/fl:Vipcre ), both (Bmal1fl/fl:Avpcre+Vipcre ), and neuromedin-s (Bmal1fl/fl:Nmscre ) neurons. We demonstrate that the loss of Bmal1 in these populations has substantial effects on home-cage circadian activity and temperature rhythms. Despite this, we found that female mice from these lines demonstrated normal estrus cycles, fecundity, kisspeptin responsiveness, and inducible LH surge. We found no evidence of reproductive disruption in constant darkness. Overall, our results indicate that while conditional Bmal1 knockout in AVP, VIP, or NMS neurons is sufficient to disrupted locomotor activity, this disruption is insufficient to recapitulate the neuroendocrine reproductive effects of the whole-body Bmal1 knockout.


Asunto(s)
Neuronas del Núcleo Supraquiasmático , Péptido Intestinal Vasoactivo , Animales , Arginina Vasopresina/genética , Ritmo Circadiano/fisiología , Femenino , Fertilidad , Kisspeptinas/genética , Hormona Luteinizante , Ratones , Núcleo Supraquiasmático/metabolismo , Neuronas del Núcleo Supraquiasmático/metabolismo
17.
Sci Transl Med ; 14(628): eabj1441, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35044788

RESUMEN

Electrophysiological devices are critical for mapping eloquent and diseased brain regions and for therapeutic neuromodulation in clinical settings and are extensively used for research in brain-machine interfaces. However, the existing clinical and experimental devices are often limited in either spatial resolution or cortical coverage. Here, we developed scalable manufacturing processes with a dense electrical connection scheme to achieve reconfigurable thin-film, multithousand-channel neurophysiological recording grids using platinum nanorods (PtNRGrids). With PtNRGrids, we have achieved a multithousand-channel array of small (30 µm) contacts with low impedance, providing high spatial and temporal resolution over a large cortical area. We demonstrated that PtNRGrids can resolve submillimeter functional organization of the barrel cortex in anesthetized rats that captured the tissue structure. In the clinical setting, PtNRGrids resolved fine, complex temporal dynamics from the cortical surface in an awake human patient performing grasping tasks. In addition, the PtNRGrids identified the spatial spread and dynamics of epileptic discharges in a patient undergoing epilepsy surgery at 1-mm spatial resolution, including activity induced by direct electrical stimulation. Collectively, these findings demonstrated the power of the PtNRGrids to transform clinical mapping and research with brain-machine interfaces.


Asunto(s)
Mapeo Encefálico , Epilepsia , Animales , Encéfalo/fisiología , Estimulación Eléctrica , Humanos , Ratas , Vigilia
18.
Endocrinology ; 162(4)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33539533

RESUMEN

In this study, we found that loss of the circadian clock gene Bmal1 causes disruptions throughout the growth hormone (GH) axis, from hepatic gene expression to production of urinary pheromones and pheromone-dependent behavior. First, we show that Bmal1 knockout (KO) males elicit reduced aggressive responses from wild-type (WT) males and secrete lower levels of major urinary proteins (MUPs); however, we also found that a liver-specific KO of Bmal1 (liver-Bmal1-KO) produces a similar reduction in MUP secretion without a defect in aggressive behavior, indicating that the decrease in elicited aggression arises from another factor. We then shifted our investigation to determine the cause of MUP dysregulation in Bmal1 KO animals. Because the pulse pattern of GH drives sexually dimorphic expression of hepatic genes including MUPs, we examined GH pulsatility. We found that Bmal1 KO males have a female-like pattern of GH release, whereas liver-Bmal1-KO mice are not significantly different from either WT or Bmal1 KO. Since differential patterns of GH release regulate the transcription of many sexually dimorphic genes in the liver, we then examined hepatic gene transcription in Bmal1 KO and liver-Bmal1-KO mice. We found that while some female-predominant genes increase in the Bmal1 KO, there was no decrease in male-predominant genes, and little change in the liver-Bmal1-KO. We also found disrupted serum insulin growth factor 1 (IGF-1) and liver Igf1 messenger RNA in the Bmal1 KO mice, which may underlie the disrupted GH release. Overall, our findings differentiate between GH-pulse-driven and circadian-driven effects on hepatic genes, and the functional consequences of altered GH pulsatility.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Ritmo Circadiano , Expresión Génica , Hormona del Crecimiento/genética , Hígado/metabolismo , Factores de Transcripción ARNTL/genética , Agresión , Animales , Conducta Animal , Femenino , Hormona del Crecimiento/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas/genética , Proteínas/metabolismo , Caracteres Sexuales
19.
Appl Phys Rev ; 8(4): 041317, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34868443

RESUMEN

Nanoscale interfaces with biological tissue, principally made with nanowires (NWs), are envisioned as minimally destructive to the tissue and as scalable tools to directly transduce the electrochemical activity of a neuron at its finest resolution. This review lays the foundations for understanding the material and device considerations required to interrogate neuronal activity at the nanoscale. We first discuss the electrochemical nanoelectrode-neuron interfaces and then present new results concerning the electrochemical impedance and charge injection capacities of millimeter, micrometer, and nanometer scale wires with Pt, PEDOT:PSS, Si, Ti, ITO, IrO x , Ag, and AgCl materials. Using established circuit models for NW-neuron interfaces, we discuss the impact of having multiple NWs interfacing with a single neuron on the amplitude and temporal characteristics of the recorded potentials. We review state of the art advances in nanoelectrode-neuron interfaces, the standard control experiments to investigate their electrophysiological behavior, and present recent high fidelity recordings of intracellular potentials obtained with ultrasharp NWs developed in our laboratory that naturally permeate neuronal cell bodies. Recordings from arrays and individually addressable electrically shorted NWs are presented, and the long-term stability of intracellular recording is discussed and put in the context of established techniques. Finally, a perspective on future research directions and applications is presented.

20.
Mol Cell Endocrinol ; 534: 111358, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34098016

RESUMEN

Regulation of Kiss1 transcription is crucial to the development and function of the reproductive axis. The homeodomain transcription factor, ventral anterior homeobox 1 (VAX1), has been implicated as a potential regulator of Kiss1 transcription. However, it is unknown whether VAX1 directly mediates transcription within kisspeptin neurons or works indirectly by acting upstream of kisspeptin neuron populations. This study tested the hypothesis that VAX1 within kisspeptin neurons regulates Kiss1 gene expression. We found that VAX1 acts as a repressor of Kiss1 in vitro and within the male arcuate nucleus in vivo. In female mice, we found that the loss of VAX1 caused a reduction in Kiss1 expression and Kiss1-containing neurons in the anteroventral periventricular nucleus at the time of the preovulatory luteinizing hormone surge, but was compensated by an increase in Kiss1-cFos colocalization. Despite changes in Kiss1 transcription, gonadotropin levels were unaffected and there were no impairments to fertility.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Proteínas de Homeodominio/genética , Hipotálamo Anterior/metabolismo , Kisspeptinas/genética , Neuropéptidos/genética , Animales , Línea Celular , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Gonadotropinas/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Kisspeptinas/metabolismo , Masculino , Ratones , Ratones Transgénicos , Neuropéptidos/metabolismo , Regiones Promotoras Genéticas , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA