RESUMEN
Piscine lactococcosis is a significant threat to cultured and wild fish populations worldwide. The disease typically presents as a per-acute to acute hemorrhagic septicemia causing high morbidity and mortality, recalcitrant to antimicrobial treatment or management interventions. Historically, the disease was attributed to the gram-positive pathogen Lactococcus garvieae. However, recent work has revealed three distinct lactococcosis-causing bacteria (LCB)-L. garvieae, L. petauri, and L. formosensis-which are phenotypically and genetically similar, leading to widespread misidentification. An update on our understanding of lactococcosis and improved methods for identification are urgently needed. To this end, we used representative isolates from each of the three LCB species to compare currently available and recently developed molecular and phenotypic typing assays, including whole-genome sequencing (WGS), end-point and quantitative PCR (qPCR) assays, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), API 20 Strep and Biolog systems, fatty acid methyl ester analysis (FAME), and Sensititre antimicrobial profiling. Apart from WGS, sequencing of the gyrB gene was the only method capable of consistent and accurate identification to the species and strain level. A qPCR assay based on a putative glycosyltransferase gene was also able to distinguish L. petauri from L. garvieae/formosensis. Biochemical tests and MALDI-TOF MS showed some species-specific patterns in sugar and fatty acid metabolism or protein profiles but should be complemented by additional analyses. The LCB demonstrated overlap in host and geographic range, but there were relevant differences in host specificity, regional prevalence, and antimicrobial susceptibility impacting disease treatment and prevention. IMPORTANCE: Lactococcosis affects a broad range of host species, including fish from cold, temperate, and warm freshwater or marine environments, as well as several terrestrial animals, including humans. As such, lactococcosis is a disease of concern for animal and ecosystem health. The disease is endemic in European and Asian aquaculture but is rapidly encroaching on ecologically and economically important fish populations across the Americas. Piscine lactococcosis is difficult to manage, with issues of vaccine escape, ineffective antimicrobial treatment, and the development of carrier fish or biofilms leading to recurrent outbreaks. Our understanding of the disease is also widely outdated. The accepted etiologic agent of lactococcosis is Lactococcus garvieae. However, historical misidentification has masked contributions from two additional species, L. petauri and L. formosensis, which are indistinguishable from L. garvieae by common diagnostic methods. This work is the first comprehensive characterization of all three agents and provides direct recommendations for species-specific diagnosis and management.
Asunto(s)
Enfermedades de los Peces , Infecciones por Bacterias Grampositivas , Lactococcus , Lactococcus/genética , Lactococcus/aislamiento & purificación , Lactococcus/clasificación , Animales , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Grampositivas/microbiología , Infecciones por Bacterias Grampositivas/veterinaria , Peces/microbiología , Secuenciación Completa del Genoma , Espectrometría de Masa por Láser de Matriz Asistida de Ionización DesorciónRESUMEN
Serological assays were conducted for anti-viral hemorrhagic septicemia virus (VHSV) antibodies in four species of fish in Wisconsin (Bluegill Lepomis macrochirus, Brown Trout Salmo trutta, Northern Pike Esox lucius, and Walleye Sander vitreus) to examine spatial and temporal distributions of exposure. Sera were tested for non-neutralizing anti-nucleocapsid antibodies to VHSV by blocking enzyme-linked immunosorbent assay (ELISA). Results (percent inhibition [%I]) were analyzed for differences among species, across geographic distance, and among water management units. Positive fish occurred in 37 of 46 inland water bodies tested, including in water bodies far from reported outbreak events. Using highly conservative species-specific thresholds (mean %I of presumptive uninfected fish + 2 SDs), 4.3% of Bluegill, 13.4% of Brown Trout, 19.3% of Northern Pike, and 18.3% of Walleye tested positive for VHSV antibodies by ELISA. Spatial patterns of seropositivity and changes in %I between sampling years were also analyzed. These analyses explore how serology might be used to understand VHSV distribution and dynamics and ultimately to inform fisheries management.
Asunto(s)
Esocidae , Enfermedades de los Peces/epidemiología , Septicemia Hemorrágica Viral/epidemiología , Novirhabdovirus/aislamiento & purificación , Percas , Perciformes , Animales , Enfermedades de los Peces/virología , Septicemia Hemorrágica Viral/virología , Estudios Seroepidemiológicos , Trucha , Wisconsin/epidemiologíaRESUMEN
Viral hemorrhagic septicemia virus (VHSV) is an ongoing cause of disease and mortality in freshwater fishes across the Great Lakes region of the Midwestern United States. Antibody detection assays such as enzyme-linked immunosorbent assay (ELISA) are nonlethal serological methods that can have significantly shorter turnaround times than the current validated viral detection diagnostic methodology for VHSV: cell culture with confirmation by polymerase chain reaction (PCR). This study evaluated an ELISA that detects nonneutralizing antinucleocapsid antibodies to VHSV in Northern Pike Esox lucius. Juvenile Northern Pike were experimentally infected with VHSV by intraperitoneal injection. The infected fish were monitored for 12 weeks for signs of disease, and weekly serum samples were obtained. An analysis of the survival data showed that mortality occurred significantly more quickly in inoculated fish than in control fish. Fish that were infected by injection showed a significant increase in antibody response by 2 weeks postinfection. However, variation in the rate and pattern of antibody response among the infected fish was high at any given point. The optimum window for detecting antibodies in Northern Pike is 2-12 weeks postinfection, which generally follows the median time to appearance of clinical signs (21 d postinfection). The receiver-operating characteristic curve analysis showed the ELISA to have a sensitivity of 80.5% and a specificity of 63.2% in Northern Pike, but these values can be adjusted by choosing different percent inhibition cutoffs, which may facilitate the use of the test for specific management goals. The results of this study offer insights into the disease progression and immune kinetics of VHSV, including interindividual variation, which will aid in the management of this economically important virus.
Asunto(s)
Anticuerpos Antivirales/sangre , Pruebas Diagnósticas de Rutina/veterinaria , Ensayo de Inmunoadsorción Enzimática/veterinaria , Esocidae , Enfermedades de los Peces/diagnóstico , Septicemia Hemorrágica Viral/diagnóstico , Novirhabdovirus/inmunología , Pruebas Serológicas/veterinaria , Animales , Pruebas Diagnósticas de Rutina/métodos , Sensibilidad y Especificidad , Pruebas Serológicas/métodosRESUMEN
Avian-origin H3N2 canine influenza virus (CIV) transferred to dogs in Asia around 2005, becoming enzootic throughout China and South Korea before reaching the United States in early 2015. To understand the posttransfer evolution and epidemiology of this virus, particularly the cause of recent and ongoing increases in incidence in the United States, we performed an integrated analysis of whole-genome sequence data from 64 newly sequenced viruses and comprehensive surveillance data. This revealed that the circulation of H3N2 CIV within the United States is typified by recurrent epidemic burst-fade-out dynamics driven by multiple introductions of virus from Asia. Although all major viral lineages displayed similar rates of genomic sequence evolution, H3N2 CIV consistently exhibited proportionally more nonsynonymous substitutions per site than those in avian reservoir viruses, which is indicative of a large-scale change in selection pressures. Despite these genotypic differences, we found no evidence of adaptive evolution or increased viral transmission, with epidemiological models indicating a basic reproductive number, R0, of between 1 and 1.5 across nearly all U.S. outbreaks, consistent with maintained but heterogeneous circulation. We propose that CIV's mode of viral circulation may have resulted in evolutionary cul-de-sacs, in which there is little opportunity for the selection of the more transmissible H3N2 CIV phenotypes necessary to enable circulation through a general dog population characterized by widespread contact heterogeneity. CIV must therefore rely on metapopulations of high host density (such as animal shelters and kennels) within the greater dog population and reintroduction from other populations or face complete epidemic extinction.IMPORTANCE The relatively recent appearance of influenza A virus (IAV) epidemics in dogs expands our understanding of IAV host range and ecology, providing useful and relevant models for understanding critical factors involved in viral emergence. Here we integrate viral whole-genome sequence analysis and comprehensive surveillance data to examine the evolution of the emerging avian-origin H3N2 canine influenza virus (CIV), particularly the factors driving ongoing circulation and recent increases in incidence of the virus within the United States. Our results provide a detailed understanding of how H3N2 CIV achieves sustained circulation within the United States despite widespread host contact heterogeneity and recurrent epidemic fade-out. Moreover, our findings suggest that the types and intensities of selection pressures an emerging virus experiences are highly dependent on host population structure and ecology and may inhibit an emerging virus from acquiring sustained epidemic or pandemic circulation.
Asunto(s)
Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/virología , Epidemias , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Infecciones por Orthomyxoviridae/veterinaria , Animales , Número Básico de Reproducción , Transmisión de Enfermedad Infecciosa , Perros , Epidemiología Molecular , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología , Filogenia , Selección Genética , Análisis de Secuencia de ADN , Estados Unidos/epidemiología , Secuenciación Completa del GenomaRESUMEN
During December 2016-February 2017, influenza A viruses of the H7N2 subtype infected ≈500 cats in animal shelters in New York, NY, USA, indicating virus transmission among cats. A veterinarian who treated the animals also became infected with feline influenza A(H7N2) virus and experienced respiratory symptoms. To understand the pathogenicity and transmissibility of these feline H7N2 viruses in mammals, we characterized them in vitro and in vivo. Feline H7N2 subtype viruses replicated in the respiratory organs of mice, ferrets, and cats without causing severe lesions. Direct contact transmission of feline H7N2 subtype viruses was detected in ferrets and cats; in cats, exposed animals were also infected via respiratory droplet transmission. These results suggest that the feline H7N2 subtype viruses could spread among cats and also infect humans. Outbreaks of the feline H7N2 viruses could, therefore, pose a risk to public health.
Asunto(s)
Enfermedades de los Gatos/virología , Subtipo H7N2 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/veterinaria , Animales , Enfermedades de los Gatos/epidemiología , Gatos , Femenino , Hurones , Humanos , Subtipo H7N2 del Virus de la Influenza A/clasificación , Subtipo H7N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/epidemiología , Gripe Humana/transmisión , Gripe Humana/virología , Ratones Endogámicos BALB C , Ciudad de Nueva York/epidemiología , Infecciones por Orthomyxoviridae/virología , Filogenia , Cultivo de VirusRESUMEN
A canine influenza A(H3N2) virus emerged in the United States in February-March 2015, causing respiratory disease in dogs. The virus had previously been circulating among dogs in Asia, where it originated through the transfer of an avian-origin influenza virus around 2005 and continues to circulate. Sequence analysis suggests the US outbreak was initiated by a single introduction, in Chicago, of an H3N2 canine influenza virus circulating among dogs in South Korea in 2015. Despite local control measures, the virus has continued circulating among dogs in and around Chicago and has spread to several other areas of the country, particularly Georgia and North Carolina, although these secondary outbreaks appear to have ended within a few months. Some genetic variation has accumulated among the US viruses, with the appearance of regional-temporal lineages. The potential for interspecies transmission and zoonotic events involving this newly emerged influenza A virus is currently unknown.
Asunto(s)
Brotes de Enfermedades , Enfermedades de los Perros/epidemiología , Genoma Viral , Subtipo H3N2 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/veterinaria , Animales , Chicago/epidemiología , Enfermedades de los Perros/transmisión , Enfermedades de los Perros/virología , Perros , Georgia/epidemiología , Secuenciación de Nucleótidos de Alto Rendimiento , Vivienda para Animales , Humanos , Incidencia , Subtipo H3N2 del Virus de la Influenza A/clasificación , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , North Carolina/epidemiología , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Filogenia , República de Corea/epidemiologíaRESUMEN
An outbreak of influenza A(H7N2) virus in cats in a shelter in New York, NY, USA, resulted in zoonotic transmission. Virus isolated from the infected human was closely related to virus isolated from a cat; both were related to low pathogenicity avian influenza A(H7N2) viruses detected in the United States during the early 2000s.
Asunto(s)
Enfermedades de los Gatos/epidemiología , Brotes de Enfermedades , Genoma Viral , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H7N2 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Zoonosis/epidemiología , Animales , Antígenos Virales/química , Antígenos Virales/genética , Antígenos Virales/metabolismo , Sitios de Unión , Aves , Enfermedades de los Gatos/transmisión , Enfermedades de los Gatos/virología , Gatos , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Vivienda para Animales , Humanos , Subtipo H7N2 del Virus de la Influenza A/clasificación , Subtipo H7N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/transmisión , Gripe Aviar/virología , Modelos Moleculares , New York/epidemiología , Polisacáridos/química , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Receptores Virales/química , Receptores Virales/genética , Receptores Virales/metabolismo , Veterinarios , Zoonosis/transmisión , Zoonosis/virologíaRESUMEN
Animal serum is an essential supplement for cell culture media. Contamination of animal serum with adventitious viruses has led to major regulatory action and product recalls. We used metagenomic methods to detect and characterize viral contaminants in 26 bovine serum samples from 12 manufacturers. Across samples, we detected sequences with homology to 20 viruses at depths of up to 50,000 viral reads per million. The viruses detected represented nine viral families plus four taxonomically unassigned viruses and had both RNA genomes and DNA genomes. Sequences ranged from 28% to 96% similar at the amino acid level to viruses in the GenBank database. The number of viruses varied from zero to 11 among samples and from one to 11 among suppliers, with only one product from one supplier being entirely "clean." For one common adventitious virus, bovine viral diarrhea virus (BVDV), abundance estimates calculated from metagenomic data (viral reads per million) closely corresponded to Ct values from quantitative real-time reverse transcription polymerase chain reaction (rtq-PCR), with metagenomics being approximately as sensitive as rtq-PCR. Metagenomics is useful for detecting taxonomically and genetically diverse adventitious viruses in commercial serum products, and it provides sensitive and quantitative information.
Asunto(s)
Bovinos/virología , ADN Viral/genética , Genoma Viral , ARN Viral/genética , Virus/genética , Animales , ADN Viral/sangre , Bases de Datos de Ácidos Nucleicos , Metagenoma , ARN Viral/sangreRESUMEN
Viral hemorrhagic septicemia virus (VHSV) is an emerging pathogen that causes mass mortality in multiple fish species. In 2007, the Great Lakes freshwater strain, type IVb, caused a large die-off of freshwater drum (Aplodinotus grunniens) in Lake Winnebago, Wisconsin, USA. To evaluate the persistence and transmission of VHSV, freshwater drum from Lake Winnebago were tested for antibodies to the virus using recently developed virus neutralization (VN) and enzyme-linked immunosorbent (ELISA) assays. Samples were also tested by real-time reverse transcription-PCR (rRT-PCR) to detect viral RNA. Of 548 serum samples tested, 44 (8.03%) were positive by VN (titers ranging from 1:16 to 1:1,024) and 45 (8.21%) were positive by ELISA, including 7 fish positive by both assays. Antibody prevalence increased with age and was higher in one northwestern area of Lake Winnebago than in other areas. Of 3,864 tissues sampled from 551 fish, 1 spleen and 1 kidney sample from a single adult female fish collected in the spring of 2012 tested positive for VHSV by rRT-PCR, and serum from the same fish tested positive by VN and ELISA. These results suggest that VHSV persists and viral transmission may be active in Lake Winnebago even in years following outbreaks and that wild fish may survive VHSV infection and maintain detectable antibody titers while harboring viral RNA. Influxes of immunologically naive juvenile fish through recruitment may reduce herd immunity, allow VHSV to persist, and drive superannual cycles of transmission that may sporadically manifest as fish kills.
Asunto(s)
Anticuerpos Antivirales/sangre , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/virología , Novirhabdovirus/inmunología , Infecciones por Rhabdoviridae/veterinaria , Estructuras Animales/virología , Animales , Ensayo de Inmunoadsorción Enzimática , Enfermedades de los Peces/inmunología , Peces , Lagos , Pruebas de Neutralización , ARN Viral/análisis , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Infecciones por Rhabdoviridae/epidemiología , Infecciones por Rhabdoviridae/virología , Estudios Seroepidemiológicos , Suero/inmunología , Suero/virología , Wisconsin/epidemiologíaRESUMEN
Eight laboratories worked collectively to evaluate 4 real-time RT-PCR (rRT-PCR) protocols targeting viral hemorrhagic septicemia virus (VHSV) being considered for deployment to a USA laboratory testing network. The protocols utilized previously published primers and probe sets developed for detection and surveillance of VHSV. All participating laboratories received and followed a standard operating protocol for extraction and for each of the rRT-PCR assays. Performance measures specifically evaluated included limit of detection (defined as the smallest amount of analyte in which 95% of the samples are classified as positive), analytical specificity, assay efficiency across genotype representatives, within- and between-plate variation within a laboratory, and variation between laboratories using the same platform, between platforms, and between software versions. This evaluation clearly demonstrated that the TaqMan®-based assay developed by Jonstrup et al. (2013; J Fish Dis 36:9-23) produced the most consistent analytical performance characteristics for detecting all genotypes of VHSV across the 8 participating laboratories.
Asunto(s)
Septicemia Hemorrágica Viral/virología , Novirhabdovirus/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Animales , Peces , Genotipo , Novirhabdovirus/genética , Vigilancia de la Población , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
Two real-time reverse transcription polymerase chain reaction (rRT-PCR) assays under consideration for deployment to multiple testing laboratories across the USA were evaluated for diagnostic sensitivity and specificity on tissue homogenates obtained from natural and experimental viral hemorrhagic septicemia (VHS)-infected fish. Estimates for diagnostic specificity using virus isolation as the reference method were similar between laboratories regardless of the assay. Diagnostic sensitivity estimates of 0.96 (95% CI: 0.95, 0.97) for Jonstrup et al. (2013)'s assay (J Fish Dis 36:9-23) exceeded the diagnostic sensitivity of 0.85 (95% CI: 0.83, 0.87) for Phelps et al. (2012)'s assay (J Aquat Anim Health 24:238-243). The Jonstrup rRT-PCR assay is robust as demonstrated by high sensitivity and specificity estimates across laboratories and can be used as a valuable tool for targeted surveillance and for testing of suspect VHSV samples.
Asunto(s)
Septicemia Hemorrágica Viral/diagnóstico , Novirhabdovirus/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Animales , Peces , Genotipo , Septicemia Hemorrágica Viral/virología , Novirhabdovirus/genética , Vigilancia de la Población , ARN Viral/genética , ARN Viral/aislamiento & purificación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Especificidad de la EspecieRESUMEN
For this study, antimicrobial susceptibility data for Salmonella enterica subsp. enterica serovar Dublin (S. Dublin)-a well-known cattle-adapted pathogen with current concerns for multidrug resistance-were recovered from cattle at the California Animal Health and Food Safety Laboratory System (CAHFS) over the last three decades (1993-2019) and were evaluated using tools to capture diversity in antimicrobial resistance. For this purpose, minimum inhibitory concentration (MIC) testing was conducted for 247 clinical S. Dublin isolates. Antimicrobial resistance (AMR) profiles revealed a predominant core multidrug-resistant pattern in the three most common AMR profiles observed. Antimicrobial resistance richness, diversity, and similarity analysis revealed patterns for changes in AMR profiles for different age groups. Discriminant analysis using MIC log2-transformed data revealed changes in MIC for year groups, with a time-sequence pattern observed. Drivers for reduced susceptibility were observed for 3rd generation cephalosporins and quinolones observed for more recent year groups (2011-2015 and 2016-2019) when compared to older year groups (1993-1999 and 2000-2005). Together, these results highlight the changes in the diversity of AMR profiles, as well as changes in susceptibility of S. Dublin over time for critical antimicrobials of importance to both animals and humans, and support the need for continued monitoring and efforts that will support judicious use of antimicrobials, especially for these two drug classes.
RESUMEN
Members of the genus Erysipelothrix are emergent pathogens of cultured eels, as well as several characid and cyprinid species. Since 2013, E. rhusiopathiae has been reported from diseased barramundi (Lates calcarifer) cultured in North America; we recovered 8 E. rhusiopathiae isolates from diseased fish during different outbreaks from the same farm. The E. rhusiopathiae isolates from barramundi were compared phenotypically and genetically to E. piscisicarius isolates characterized from ornamental fish and E. rhusiopathiae recovered from aquatic and terrestrial animals. All barramundi isolates were PCR-positive for the surface protective antigen type B (spaB) gene, and shared ≥ 99.7% sequence similarity among concatenated multilocus sequence analysis gene sequences, indicating a high degree of genetic homogeneity. These isolates were > 99% similar to other spaB-positive isolates from marine invertebrates and marine mammals, consistent with findings for other spa types. The spaA and spaB isolates shared < 98% similarity, as well as < 90% similarity with spaC-positive E. piscisicarius. Similar clonality among the spaB isolates was observed using repetitive element palindromic PCR. In experimental intracoelomic injection challenges conducted to fulfill Koch postulates, 67% of exposed tiger barbs (Puntigrus tetrazona) died within 14 d of challenge. Our study supports previous work citing the genetic variability of Erysipelothrix spp. spa types and the emergence of members of the genus Erysipelothrix as nascent fish pathogens.
RESUMEN
Salmonella enterica subsp. enterica serovar Dublin (S.Dublin) is a cattle-adapted pathogen that has emerged as one of the most commonly isolated and multidrug resistant (MDR) serovars in cattle. S.Dublin may be shed in feces, milk, and colostrum and persist in asymptomatic cattle, leading to spread and outbreaks in herds. Though infections with S.Dublin in humans are rare, they are frequently severe, with extraintestinal spread that requires hospitalization and antimicrobial therapy. To determine minimum inhibitory concentration (MIC) and antimicrobial resistance (AMR) patterns and trends in cattle in California, broth microdilution testing was performed on 247 clinical S. Dublin isolates recovered from cattle at the California Animal Health and Food Safety Laboratory System (CAHFS) over the last three decades (1993-2019). Mean MICs and classification of resistance to antimicrobial drugs using a clinical livestock panel and the National Antimicrobial Resistance Monitoring System (NARMS) Gram-negative drug panels were utilized to assess prevalence and trends in AMR. Findings indicate an increase in AMR for the years 1993 to 2015. Notably, compared to the baseline year interval (1993-1999), there was an increase in resistance among quinolone and cephalosporin drugs, as well as an increased number of isolates with an MDR profile.
RESUMEN
Proliferative growth, consistent with poxvirus infection, encapsulated plastic beak-bits and covered the dorsal portion of the upper beak and nares of adult male and female captive-raised Hungarian partridges. Three representative birds were submitted to the Wisconsin Veterinary Diagnostic Laboratory for necropsy. Lesions in the necropsied birds extended through the nares, where the plastic bit ends are designed to rest. The lesions also variably extended caudally into the oropharynx and cranially within the beak epithelium, and included palate deformity and beak necrosis. Poxvirus was diagnosed in all of the birds examined based on histopathology, electron microscopy, and polymerase chain reaction amplification and sequencing. This report is the first to describe avian pox lesions associated with the application of beak-bits and the resulting beak and oral pathology.
Asunto(s)
Avipoxvirus/patogenicidad , Pico/virología , Enfermedades de las Aves/virología , Galliformes/virología , Infecciones por Poxviridae/veterinaria , Animales , Autopsia/veterinaria , Pico/patología , Enfermedades de las Aves/patología , Cartilla de ADN , Femenino , Hungría , Hiperplasia/patología , Hiperplasia/veterinaria , Hiperplasia/virología , Masculino , Necrosis , Reacción en Cadena de la Polimerasa , Infecciones por Poxviridae/patología , Vacuolas/patología , Vacuolas/virologíaRESUMEN
Many of the sample matrices typically used for veterinary molecular testing contain inhibitory factors that can potentially reduce analytic sensitivity or produce false-negative results by masking the signal produced by the nucleic acid target. Inclusion of internal controls in PCR-based assays is a valuable strategy not only for monitoring for PCR inhibitors, but also for monitoring nucleic acid extraction efficiency, and for identifying technology errors that may interfere with the ability of an assay to detect the intended target. The Laboratory Technology Committee of the American Association of Veterinary Laboratory Diagnosticians reviewed the different types of internal controls related to monitoring inhibition of PCR-based assays, and provides information here to encourage veterinary diagnostic laboratories to incorporate PCR internal control strategies as a routine quality management component of their molecular testing.
Asunto(s)
Enfermedades de los Animales/diagnóstico , Técnicas de Diagnóstico Molecular/veterinaria , Animales , Laboratorios/normas , Técnicas de Diagnóstico Molecular/métodos , Reacción en Cadena de la Polimerasa/veterinaria , Control de CalidadRESUMEN
Genetic sequencing, or DNA sequencing, using the Sanger technique has become widely used in the veterinary diagnostic community. This technology plays a role in verification of PCR results and is used to provide the genetic sequence data needed for phylogenetic analysis, epidemiologic studies, and forensic investigations. The Laboratory Technology Committee of the American Association of Veterinary Laboratory Diagnosticians has prepared guidelines for sample preparation, submission to sequencing facilities or instrumentation, quality assessment of nucleic acid sequence data performed, and for generating basic sequencing data and phylogenetic analysis for diagnostic applications. This guidance is aimed at assisting laboratories in providing consistent, high-quality, and reliable sequence data when using Sanger-based genetic sequencing as a component of their laboratory services.
Asunto(s)
Enfermedades de los Animales/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/veterinaria , Reacción en Cadena de la Polimerasa/veterinaria , Animales , Secuencia de Bases , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Laboratorios , Filogenia , Análisis de Secuencia de ADN/veterinariaRESUMEN
The exquisite sensitivity of in vitro amplification assays such as real-time polymerase chain reaction (rtPCR) requires the establishment of thorough and robust laboratory practices. To this end, an American Association of Veterinary Laboratory Diagnosticians (AAVLD) committee of subject matter experts was convened to develop a set of best practices for performance of nucleic acid amplification assays. Consensus advice for the performance of preanalytical, analytical, and postanalytical steps is presented here, along with a review of supporting literature.
Asunto(s)
Laboratorios/normas , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Animales , Control de Calidad , Sensibilidad y EspecificidadRESUMEN
This consensus document presents the suggested guidelines developed by the Laboratory Technology Committee (LTC) of the American Association of Veterinary Laboratory Diagnosticians (AAVLD) for development, validation, and modification (methods comparability) of real-time PCR (rtPCR) assays. These suggested guidelines are presented with reference to the World Organisation for Animal Health (OIE) guidelines for validation of nucleic acid detection assays used in veterinary diagnostic laboratories. Additionally, our proposed practices are compared to the guidelines from the Foods Program Regulatory Subdivision of the U.S. Food and Drug Administration (FDA) and from the American Society for Veterinary Clinical Pathology (ASVCP). The LTC suggestions are closely aligned with those from the OIE and comply with version 2021-01 of the AAVLD Requirements for an Accredited Veterinary Medical Diagnostic Laboratory, although some LTC recommendations are more stringent and extend beyond the AAVLD requirements. LTC suggested guidelines are substantially different than the guidelines recently published by the U.S. FDA for validation and modification of regulated tests used for detection of pathogens in pet food and animal-derived products, such as dairy. Veterinary diagnostic laboratories that perform assays from the FDA Bacteriological Analytical Method (BAM) manual must be aware of the different standard.
Asunto(s)
Adhesión a Directriz/normas , Laboratorios/normas , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Animales , Guías como Asunto/normas , Patología Clínica/normas , Control de Calidad , Reproducibilidad de los Resultados , Estados UnidosRESUMEN
Bovine herpesvirus 1 (BoHV-1) is an infectious agent of concern in the international export of bovine products; it is endemic in the United States, but it has been eradicated in many countries of the European Union (EU). For export of semen to the EU, accurate assessment of BoHV-1 status of the bull is required and is usually accomplished by measuring the level of antibody to the virus. The gold standard is virus neutralization (VN) using overnight incubation with the virus, a test approved by the World Organization for Animal Health (OIE). Enzyme-linked immunosorbent assay (ELISA) is also approved for international trade. The lone U.S. Department of Agriculture-approved commercial ELISA was compromised with specificity problems, which necessitated the development of a different ELISA. Of 4 monoclonal antibodies evaluated, 1 directed against glycoprotein C of BoHV-1 was found to be the most reliable. One hundred twenty-eight characterized positive samples and 334 negative serum samples were tested. The blocking ELISA showed 97.7% sensitivity and 99.4% specificity as compared with OIE VN. The Wisconsin Veterinary Diagnostic Laboratory ELISA fulfills the OIE requirement for a blocking or competitive ELISA to qualify animals for export to BoHV-1-free countries.