Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Reprod Biomed Online ; 43(5): 799-809, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34602345

RESUMEN

RESEARCH QUESTION: What is the impact of radiation exposure on oocyte quality and female fertility? DESIGN: Prepubertal mice underwent whole-body irradiation with a single dose (0.02, 0.1, 0.5, 2, 8 Gy) of gamma- or X-rays. Oocytes were quantified in irradiated (n = 36) and sham-treated (n = 8) mice. After a single exposure to 2 Gy, formation of DNA double-strand breaks (n = 10), activation of checkpoint kinase (Chk2) (n = 10) and dynamics of follicular growth (n = 18) were analysed. Fertility assessment was performed in adult irradiated mice and controls from the number of pups per mouse (n = 28) and the fetal abortion rate (n = 24). Ploidy of mature oocytes (n = 20) was analysed after CREST immunostaining, and uterine sections were examined. RESULTS: Radiation exposure induced a massive loss of primordial follicles with LD50 below 50 mGy for both gamma and X-rays. Growing follicles survived doses up to 8 Gy. This difference in radiosensitivity was not due to a different amount of radio-induced DNA damage, and Chk2 was activated in all oocytes. Exposure to a 2 Gy dose abolished the long-term fertility of females due to depletion of the ovarian reserve. Detailed analysis indicates that surviving oocytes were able to complete folliculogenesis and could be fertilized. This transient fertility allowed irradiated females to produce a single litter albeit with a high rate of fetal abortion (23%, P = 0.0096), related to altered ploidy in the surviving oocytes (25.5%, P = 0.0035). CONCLUSIONS: The effects of radiation on surviving oocyte quality question natural conception as a first-line approach in cancer survivors. Together, the data emphasize the need for fertility preservation before radiation exposure and call for reassessment of the use of cryopreserved oocytes.


Asunto(s)
Preservación de la Fertilidad/métodos , Oocitos/fisiología , Oocitos/efectos de la radiación , Ovario/efectos de la radiación , Insuficiencia Ovárica Primaria/etiología , Aborto Espontáneo , Aneuploidia , Animales , ADN/efectos de la radiación , Daño del ADN , Modelos Animales de Enfermedad , Relación Dosis-Respuesta en la Radiación , Femenino , Rayos gamma , Ratones , Ratones Endogámicos C57BL , Folículo Ovárico/efectos de la radiación , Reserva Ovárica/efectos de la radiación , Maduración Sexual/efectos de la radiación , Irradiación Corporal Total , Rayos X
2.
PLoS Pathog ; 9(12): e1003810, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24348253

RESUMEN

The mucosal events of HIV transmission have been extensively studied, but the role of infected cells present in the genital and rectal secretions, and in the semen, in particular, remains a matter of debate. As a prerequisite to a thorough in vivo investigation of the early transmission events through infected cells, we characterized in detail by multi-parameter flow cytometry the changes in macaque seminal leukocytes during SIVmac251 infection, focusing on T cells, macrophages and dendritic cells. Using immunocytofluorescence targeting SIV proteins and real-time quantitative PCR targeting SIV DNA, we investigated the nature of the infected cells on sorted semen leukocytes from macaques at different stages of infection. Finally, we cocultured semen CD4(+) T cells and macrophages with a cell line permissive to SIV infection to assess their infectivity in vitro. We found that primary infection induced strong local inflammation, which was associated with an increase in the number of leukocytes in semen, both factors having the potential to favor cell-associated virus transmission. Semen CD4(+) T cells and macrophages were productively infected at all stages of infection and were infectious in vitro. Lymphocytes had a mucosal phenotype and expressed activation (CD69 & HLA-DR) and migration (CCR5, CXCR4, LFA-1) markers. CD69 expression was increased in semen T cells by SIV infection, at all stages of infection. Macrophages predominated at all stages and expressed CD4, CCR5, MAC-1 and LFA-1. Altogether, we demonstrated that semen contains the two major SIV-target cells (CD4+ T cells and macrophages). Both cell types can be productively infected at all stages of SIV infection and are endowed with markers that may facilitate transmission of infection during sexual exposure.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Macrófagos/virología , Semen/inmunología , Semen/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios , Animales , Recuento de Linfocito CD4 , Linfocitos T CD4-Positivos/inmunología , ADN Viral/análisis , Modelos Animales de Enfermedad , Macaca fascicularis , Macrófagos/inmunología , Masculino , Fenotipo , Semen/citología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/fisiología , Esparcimiento de Virus
3.
Stem Cell Res Ther ; 14(1): 201, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37568164

RESUMEN

BACKGROUND: Human multilineage-differentiating stress enduring (Muse) cells are nontumorigenic endogenous pluripotent-like stem cells that can be easily obtained from various adult or fetal tissues. Regenerative effects of Muse cells have been shown in some disease models. Muse cells specifically home in damaged tissues where they exert pleiotropic effects. Exposition of the small intestine to high doses of irradiation (IR) delivered after radiotherapy or nuclear accident results in a lethal gastrointestinal syndrome (GIS) characterized by acute loss of intestinal stem cells, impaired epithelial regeneration and subsequent loss of the mucosal barrier resulting in sepsis and death. To date, there is no effective medical treatment for GIS. Here, we investigate whether Muse cells can prevent lethal GIS and study how they act on intestinal stem cell microenvironment to promote intestinal regeneration. METHODS: Human Muse cells from Wharton's jelly matrix of umbilical cord (WJ-Muse) were sorted by flow cytometry using the SSEA-3 marker, characterized and compared to bone-marrow derived Muse cells (BM-Muse). Under gas anesthesia, GIS mice were treated or not through an intravenous retro-orbital injection of 50,000 WJ-Muse, freshly isolated or cryopreserved, shortly after an 18 Gy-abdominal IR. No immunosuppressant was delivered to the mice. Mice were euthanized either 24 h post-IR to assess early small intestine tissue response, or 7 days post-IR to assess any regenerative response. Mouse survival, histological stainings, apoptosis and cell proliferation were studied and measurement of cytokines, recruitment of immune cells and barrier functional assay were performed. RESULTS: Injection of WJ-Muse shortly after abdominal IR highly improved mouse survival as a result of a rapid regeneration of intestinal epithelium with the rescue of the impaired epithelial barrier. In small intestine of Muse-treated mice, an early enhanced secretion of IL-6 and MCP-1 cytokines was observed associated with (1) recruitment of monocytes/M2-like macrophages and (2) proliferation of Paneth cells through activation of the IL-6/Stat3 pathway. CONCLUSION: Our findings indicate that a single injection of a small quantity of WJ-Muse may be a new and easy therapeutic strategy for treating lethal GIS.


Asunto(s)
Alprostadil , Células Madre Mesenquimatosas , Adulto , Ratones , Humanos , Animales , Diferenciación Celular/fisiología , Alprostadil/metabolismo , Células Madre Mesenquimatosas/metabolismo , Interleucina-6/metabolismo , Intestinos
4.
Blood Cancer Discov ; 3(4): 285-297, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35290450

RESUMEN

Current murine models of myeloproliferative neoplasms (MPNs) cannot examine how MPNs progress from a single bone marrow source to the entire hematopoietic system. Thus, using transplantation of knock-in JAK2V617F hematopoietic cells into a single irradiated leg, we show development of polycythemia vera (PV) from a single anatomic site in immunocompetent mice. Barcode experiments reveal that grafted JAK2V617F stem/progenitor cells migrate from the irradiated leg to nonirradiated organs such as the contralateral leg and spleen, which is strictly required for development of PV. Mutant cells colonizing the nonirradiated leg efficiently induce PV in nonconditioned recipient mice and contain JAK2V617F hematopoietic stem/progenitor cells that express high levels of carbonic anhydrase 1 (CA1), a peculiar feature also found in CD34+ cells from patients with PV. Finally, genetic and pharmacologic inhibition of CA1 efficiently suppresses PV development and progression in mice and decreases PV patients' erythroid progenitors, strengthening CA1 as a potent therapeutic target for PV. SIGNIFICANCE: Follow-up of hematopoietic malignancies from their initiating anatomic site is crucial for understanding their development and discovering new therapeutic avenues. We developed such an approach, used it to characterize PV progression, and identified CA1 as a promising therapeutic target of PV. This article is highlighted in the In This Issue feature, p. 265.


Asunto(s)
Anhidrasas Carbónicas , Neoplasias Hematológicas , Policitemia Vera , Animales , Neoplasias Hematológicas/patología , Células Madre Hematopoyéticas , Janus Quinasa 2/genética , Ratones , Policitemia Vera/tratamiento farmacológico
5.
EBioMedicine ; 44: 60-70, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31130476

RESUMEN

BACKGROUND: Mature myeloid cells play a crucial role in Crohn's disease (CD) but the molecular players that regulate their functions in CD are not fully characterized. We and others have shown that TRIM33 is involved in the innate immune response and in the inflammatory response but TRIM33 role in intestinal inflammation is not known. In this study, we investigated the role of TRIM33 in myeloid cells during dextran sulfate sodium (DSS)-induced colitis. METHODS: We study the role of TRIM33 during DSS-induced colitis which mimics intestinal inflammation using mice deleted for Trim33 only in mature myeloid cells (Trim33-/- mice) FINDINGS: We first show that Trim33 mRNA level is decreased in CD patient's blood monocytes suggesting a role of TRIM33 in CD. Using Trim33-/- mice, we show that these mice display an impaired resolution of colonic inflammation with an increased number of blood and colon monocytes and a decreased number of colonic macrophages. Trim33-/- monocytes are less competent for recruitment and macrophage differentiation. Finally, during resolution of inflammation, Trim33-/- colonic macrophages display an impaired M1/M2 switch and express a low level of membrane-bound TNF that is associated with an increased number of colonic neutrophils. INTERPRETATION: Our study shows an important role of TRIM33 in monocytes/macrophages during DSS-induced colitis and suggests that the decreased expression of TRIM33 in CD patient's blood monocytes might not be a consequence but might be involved in CD progression. FUND: La Ligue contre le Cancer (équipe labelisée), INSERM, CEA, Université Paris-Diderot, Université Paris-Sud.


Asunto(s)
Colitis/etiología , Macrófagos/metabolismo , Monocitos/metabolismo , Factores de Transcripción/deficiencia , Animales , Biomarcadores , Colitis/metabolismo , Colitis/patología , Enfermedad de Crohn/etiología , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/patología , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Activación de Macrófagos/genética , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Ratones , Ratones Noqueados , Monocitos/inmunología , Células Mieloides/inmunología , Células Mieloides/metabolismo , ARN Mensajero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA