Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(19)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37834421

RESUMEN

Remdesivir (RDV) has demonstrated clinical benefit in hospitalized COronaVIrus Disease (COVID)-19 patients. The objective of this brief report was to assess a possible correlation between RDV therapy and the variation in lymphocyte subpopulations. We retrospectively studied 43 hospitalized COVID-19 patients: 30 men and 13 women (mean age 69.3 ± 15 years); 9/43 had received RDV therapy. Six patients had no need for oxygen (severity group 0); 22 were on oxygen treatment with a fraction of inspired oxygen (FiO2) ≤ 50% (group 1); 7 on not-invasive ventilation (group 2); 3 on invasive mechanical ventilation (group 3); and 5 had died (group 4). Cytofluorimetric assessment of lymphocyte subpopulations showed substantial changes after RDV therapy: B lymphocytes and plasmablasts were significantly increased (p = 0.002 and p = 0.08, respectively). Cytotoxic T lymphocytes showed a robust reduction (p = 0.008). No changes were observed in CD4+-T cells and natural killers (NKs). There was a significant reduction in regulatory T cells (Tregs) (p = 0.02) and a significant increase in circulating monocytes (p = 0.03). Stratifying by disease severity, after RDV therapy, patients with severity 0-2 had significantly higher B lymphocyte and monocyte counts and lower memory and effector cytotoxic T cell counts. Instead, patients with severity 3-4 had significantly higher plasmablast and lower memory T cell counts. No significant differences for CD4+-T cells, Tregs, and NKs were observed. Our brief report showed substantial changes in the lymphocyte subpopulations analyzed between patients who did not receive RDV therapy and those after RDV treatment. Despite the small sample size, due to the retrospective nature of this brief report, the substantial changes in lymphocyte subpopulations reported could lead to speculation on the role of RDV treatment both on immune responses against the virus and on the possible downregulation of the cytokine storm observed in patients with more severe disease.


Asunto(s)
COVID-19 , Masculino , Humanos , Femenino , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Estudios Retrospectivos , Tratamiento Farmacológico de COVID-19 , Subgrupos Linfocitarios , Oxígeno
2.
Cells ; 12(22)2023 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-37998389

RESUMEN

Inflammatory bowel diseases (IBDs) are characterized by a persistent low-grade inflammation that leads to an increased risk of colorectal cancer (CRC) development. Several factors are implicated in this pathogenetic pathway, such as innate and adaptive immunity, gut microbiota, environment, and xenobiotics. At the gut mucosa level, a complex interplay between the immune system and gut microbiota occurs; a disequilibrium between these two factors leads to an alteration in the gut permeability, called 'leaky gut'. Subsequently, an activation of several inflammatory pathways and an alteration of gut microbiota composition with a proliferation of pro-inflammatory bacteria, known as 'pathobionts', take place, leading to a further increase in inflammation. This narrative review provides an overview on the principal Pattern Recognition Receptors (PRRs), including Toll-like receptors (TLRs) and NOD-like receptors (NLRs), focusing on their recognition mechanisms, signaling pathways, and contributions to immune responses. We also report the genetic polymorphisms of TLRs and dysregulation of NLR signaling pathways that can influence immune regulation and contribute to the development and progression of inflammatory disease and cancer.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Neoplasias , Humanos , Inmunidad Innata , Inflamación , Receptores Toll-Like/metabolismo
3.
J Exp Clin Cancer Res ; 42(1): 218, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620852

RESUMEN

BACKGROUND: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy, characterized by restricted cellular subsets with asymmetrically enriched leukemia initiating cell (LIC) activity. Nonetheless, it is still unclear which signaling programs promote LIC maintenance and progression. METHODS: Here, we evaluated the role of the biological clock in the regulation of the molecular mechanisms and signaling pathways impacting the cellular dynamics in T-ALL through an integrated experimental approach including gene expression profiling of shRNA-modified T-ALL cell lines and Chromatin Immunoprecipitation Sequencing (ChIP-Seq) of leukemic cells. Patient-derived xenograft (PDXs) cell subsets were also genetically manipulated in order to assess the LIC activity modulated by the loss of biological clock in human T-ALL. RESULTS: We report that the disruption of the circadian clock circuitry obtained through shRNA-mediated knockdown of CLOCK and BMAL1 genes negatively impacted the growth in vitro as well as the activity in vivo of LIC derived from PDXs after transplantation into immunodeficient recipient mice. Additionally, gene expression data integrated with ChIP-Seq profiles of leukemic cells revealed that the circadian clock directly promotes the expression of genes, such as IL20RB, crucially involved in JAK/STAT signaling, making the T-ALL cells more responsive to Interleukin 20 (IL20). CONCLUSION: Taken together, our data support the concept that the biological clock drives the expression of IL20R prompting JAK/STAT signaling and promoting LIC activity in T-ALL and suggest that the selective targeting of circadian components could be therapeutically relevant for the treatment of T-ALL patients.


Asunto(s)
Relojes Circadianos , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Animales , Ratones , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Transducción de Señal , Modelos Animales de Enfermedad , ARN Interferente Pequeño , Linfocitos T
4.
Sci Rep ; 13(1): 21199, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040752

RESUMEN

Notch signaling is an evolutionary conserved pathway with a key role in tissue homeostasis, differentiation and proliferation. It was reported that Notch1 receptor negatively regulates mouse osteoclast development and formation by inhibiting the expression of macrophage colony-stimulating factor in mesenchymal cells. Nonetheless, the involvement of Notch1 pathway in the generation of human osteoclasts is still controversial. Here, we report that the constitutive activation of Notch1 signaling induced a differentiation block in human mononuclear CD14+ cells directly isolated from peripheral blood mononuclear cells (PBMCs) upon in vitro stimulation to osteoclasts. Additionally, using a combined approach of single-cell RNA sequencing (scRNA-Seq) simultaneously with a panel of 31 oligo-conjugated antibodies against cell surface markers (AbSeq assay) as well as unsupervised learning methods, we detected four different cell stages of human RANKL-induced osteoclastogenesis after 5 days in which Notch1 signaling enforces the cell expansion of specific subsets. These cell populations were characterized by distinct gene expression and immunophenotypic profiles and active Notch1, JAK/STAT and WNT signaling pathways. Furthermore, cell-cell communication analyses revealed extrinsic modulators of osteoclast progenitors including the IL7/IL7R and WNT5a/RYK axes. Interestingly, we also report that Interleukin-7 receptor (IL7R) was a downstream effector of Notch1 pathway and that Notch1 and IL7R interplay promoted cell expansion of human RANKL-induced osteoclast progenitors. Taken together, these findings underline a novel cell pattern of human osteoclastogenesis, outlining the key role of Notch1 and IL-7R signaling pathways.


Asunto(s)
Leucocitos Mononucleares , Osteogénesis , Humanos , Diferenciación Celular , Osteoclastos/metabolismo , Ligando RANK/farmacología , Ligando RANK/metabolismo , Transducción de Señal
5.
Vaccines (Basel) ; 10(8)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-36016169

RESUMEN

Background: LC has been associated with hyporesponsiveness to several vaccines. Nonetheless, no data on complete serological and B- and T-cell immune response are currently available. Aims: To assess, in comparison with healthy controls of the same age and gender, both humoral and cellular immunoresponses of patients with LC after two or three doses of the mRNA Pfizer-BioNTech vaccine against SARS-CoV-2 and to investigate clinical features associated with non-response. Material and methods: 179 patients with LC of CTP class A in 93.3% and viral etiology in 70.1% of cases were longitudinally evaluated starting from the day before the first dose to 4 weeks after the booster dose. Their antibody responses were compared to those of healthcare workers without co-morbidities. In a subgroup of 40 patients, B- and T-cell responses were also compared to controls. Results: At d31, d90 and d180 after BNT162b2 vaccine, no detectable SARS-CoV-2 IgG response was observed in 5.9%, 3.9% and 7.2% of LC patients as compared to 0 controls (p < 0.03). A delay in B-cell and lack of prompt T-cell response compared to healthcare workers was also registered. A significant correlation between antibody titers and cellular response was observed. A MELD score > 8 was the only independent predictor of poor d31 response (p = 0.028). Conclusions: Our results suggest that cirrhotic patients have a slower and in <10% suboptimal immune response to SARS-CoV-2 vaccination. Rates of breakthrough infections were comparable between cirrhotics and controls. The booster dose was critical in inducing both humoral and cellular responses comparable to controls.

6.
Vaccines (Basel) ; 9(10)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34696315

RESUMEN

The escalation of Coronavirus disease 2019 (COVID-19) has required the development of safe and effective vaccines against the severe acute respiratory syndrome coronavirus 2-associated (SARS-CoV-2), which is the causative agent of the disease. Here, we determined the levels of antibodies, antigen-specific B cells, against a recombinant GFP-tagged SARS-CoV-2 spike (S) protein and total T and NK cell subsets in subjects up to 20 days after the injection of the BNT162b2 (Pfizer-BioNTech) vaccine using a combined approach of serological and flow cytometry analyses. In former COVID-19 patients and highly responsive individuals, a significant increase of antibody production was detected, simultaneous with an expansion of antigen-specific B cell response and the total number of NK-T cells. Additionally, through a genetic screening of a specific polymorphic region internal to the 3' regulatory region 1 (3'RR1) of human immunoglobulin constant-gene (IgH) locus, we identified different single-nucleotide polymorphic (SNP) variants associated with either highly or lowly responsive subjects. Taken together, these results suggest that favorable genetic backgrounds and immune profiles support the progression of an effective response to BNT162b2 vaccination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA