Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Glob Chang Biol ; 30(1): e17146, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273515

RESUMEN

Temperate forests are undergoing significant transformations due to the influence of climate change, including varying responses of different tree species to increasing temperature and drought severity. To comprehensively understand the full range of growth responses, representative datasets spanning extensive site and climatic gradients are essential. This study utilizes tree-ring data from 550 sites from the temperate forests of Czechia to assess growth trends of six dominant Central European tree species (European beech, Norway spruce, Scots pine, silver fir, sessile and pedunculate oak) over 1990-2014. By modeling mean growth series for each species and site, and employing principal component analysis, we identified the predominant growth trends. Over the study period, linear growth trends were evident across most sites (56% increasing, 32% decreasing, and 10% neutral). The proportion of sites with stationary positive trends increased from low toward high elevations, whereas the opposite was true for the stationary negative trends. Notably, within the middle range of their distribution (between 500 and 700 m a.s.l.), Norway spruce and European beech exhibited a mix of positive and negative growth trends. While Scots pine growth trends showed no clear elevation-based pattern, silver fir and oaks displayed consistent positive growth trends regardless of site elevation, indicating resilience to the ongoing warming. We demonstrate divergent growth trajectories across space and among species. These findings are particularly important as recent warming has triggered a gradual shift in the elevation range of optimal growth conditions for most tree species and has also led to a decoupling of growth trends between lowlands and mountain areas. As a result, further future shifts in the elevation range and changes in species diversity of European temperate forests can be expected.


Asunto(s)
Fagus , Picea , Pinus sylvestris , Quercus , Árboles , Bosques , Picea/fisiología , Noruega , Cambio Climático
2.
Int J Biometeorol ; 68(8): 1533-1544, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38630139

RESUMEN

Dry spells strongly influence biomass production in forest ecosystems. Their effects may last several years following a drought event, prolonging growth reduction and therefore restricting carbon sequestration. Yet, our understanding of the impact of dry spells on the vitality of trees' above-ground biomass components (e.g., stems and leaves) at a landscape level remains limited. We analyzed the responses of Pinus sylvestris and Picea abies to the four most severe drought years in topographically complex sites. To represent stem growth and canopy greenness, we used chronologies of tree-ring width and time series of the Normalized Difference Vegetation Index (NDVI). We analyzed the responses of radial tree growth and NDVI to dry spells using superposed epoch analysis and further explored this relationship using mixed-effect models. Our results show a stronger and more persistent response of radial growth to dry spells and faster recovery of canopy greenness. Canopy greenness started to recover the year after the dry spell, whereas radial tree growth remained reduced for the two subsequent years and did not recover the pre-drought level until the fourth year after the event. Stem growth and canopy greenness were influenced by climatic conditions during and after drought events, while the effect of topography was marginal. The opposite responses of stem growth and canopy greenness following drought events suggest a different impact of dry spells on trees´ sink and source compartments. These results underscore the crucial importance of understanding the complexities of tree growth as a major sink of atmospheric carbon.


Asunto(s)
Sequías , Picea , Pinus sylvestris , Tallos de la Planta , Tallos de la Planta/crecimiento & desarrollo , Picea/crecimiento & desarrollo , Pinus sylvestris/crecimiento & desarrollo , Biomasa , Hojas de la Planta/crecimiento & desarrollo , Árboles/crecimiento & desarrollo
3.
Glob Chang Biol ; 29(2): 462-476, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36200330

RESUMEN

Radial tree growth is sensitive to environmental conditions, making observed growth increments an important indicator of climate change effects on forest growth. However, unprecedented climate variability could lead to non-stationarity, that is, a decoupling of tree growth responses from climate over time, potentially inducing biases in climate reconstructions and forest growth projections. Little is known about whether and to what extent environmental conditions, species, and model type and resolution affect the occurrence and magnitude of non-stationarity. To systematically assess potential drivers of non-stationarity, we compiled tree-ring width chronologies of two conifer species, Picea abies and Pinus sylvestris, distributed across cold, dry, and mixed climates. We analyzed 147 sites across the Europe including the distribution margins of these species as well as moderate sites. We calibrated four numerical models (linear vs. non-linear, daily vs. monthly resolution) to simulate growth chronologies based on temperature and soil moisture data. Climate-growth models were tested in independent verification periods to quantify their non-stationarity, which was assessed based on bootstrapped transfer function stability tests. The degree of non-stationarity varied between species, site climatic conditions, and models. Chronologies of P. sylvestris showed stronger non-stationarity compared with Picea abies stands with a high degree of stationarity. Sites with mixed climatic signals were most affected by non-stationarity compared with sites sampled at cold and dry species distribution margins. Moreover, linear models with daily resolution exhibited greater non-stationarity compared with monthly-resolved non-linear models. We conclude that non-stationarity in climate-growth responses is a multifactorial phenomenon driven by the interaction of site climatic conditions, tree species, and methodological features of the modeling approach. Given the existence of multiple drivers and the frequent occurrence of non-stationarity, we recommend that temporal non-stationarity rather than stationarity should be considered as the baseline model of climate-growth response for temperate forests.


Asunto(s)
Pinus , Tracheophyta , Bosques , Cambio Climático , Temperatura
4.
Glob Chang Biol ; 29(6): 1606-1617, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36451586

RESUMEN

Despite growing interest in predicting plant phenological shifts, advanced spring phenology by global climate change remains debated. Evidence documenting either small or large advancement of spring phenology to rising temperature over the spatio-temporal scales implies a potential existence of a thermal threshold in the responses of forests to global warming. We collected a unique data set of xylem cell-wall-thickening onset dates in 20 coniferous species covering a broad mean annual temperature (MAT) gradient (-3.05 to 22.9°C) across the Northern Hemisphere (latitudes 23°-66° N). Along the MAT gradient, we identified a threshold temperature (using segmented regression) of 4.9 ± 1.1°C, above which the response of xylem phenology to rising temperatures significantly decline. This threshold separates the Northern Hemisphere conifers into cold and warm thermal niches, with MAT and spring forcing being the primary drivers for the onset dates (estimated by linear and Bayesian mixed-effect models), respectively. The identified thermal threshold should be integrated into the Earth-System-Models for a better understanding of spring phenology in response to global warming and an improved prediction of global climate-carbon feedbacks.


Asunto(s)
Tracheophyta , Teorema de Bayes , Bosques , Frío , Temperatura , Cambio Climático , Estaciones del Año
5.
Proc Natl Acad Sci U S A ; 117(34): 20645-20652, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32759218

RESUMEN

Wood formation consumes around 15% of the anthropogenic CO2 emissions per year and plays a critical role in long-term sequestration of carbon on Earth. However, the exogenous factors driving wood formation onset and the underlying cellular mechanisms are still poorly understood and quantified, and this hampers an effective assessment of terrestrial forest productivity and carbon budget under global warming. Here, we used an extensive collection of unique datasets of weekly xylem tissue formation (wood formation) from 21 coniferous species across the Northern Hemisphere (latitudes 23 to 67°N) to present a quantitative demonstration that the onset of wood formation in Northern Hemisphere conifers is primarily driven by photoperiod and mean annual temperature (MAT), and only secondarily by spring forcing, winter chilling, and moisture availability. Photoperiod interacts with MAT and plays the dominant role in regulating the onset of secondary meristem growth, contrary to its as-yet-unquantified role in affecting the springtime phenology of primary meristems. The unique relationships between exogenous factors and wood formation could help to predict how forest ecosystems respond and adapt to climate warming and could provide a better understanding of the feedback occurring between vegetation and climate that is mediated by phenology. Our study quantifies the role of major environmental drivers for incorporation into state-of-the-art Earth system models (ESMs), thereby providing an improved assessment of long-term and high-resolution observations of biogeochemical cycles across terrestrial biomes.


Asunto(s)
Tracheophyta/crecimiento & desarrollo , Madera/crecimiento & desarrollo , Xilema/crecimiento & desarrollo , Clima , Cambio Climático , Ecosistema , Bosques , Calentamiento Global , Modelos Biológicos , Fotoperiodo , Estaciones del Año , Temperatura , Tracheophyta/genética , Árboles/crecimiento & desarrollo
6.
Glob Chang Biol ; 28(2): 557-570, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34610189

RESUMEN

Extreme tree growth reductions represent events of abrupt forest productivity decline and carbon sequestration reduction. An increase in their magnitude can represent an early warning signal of impending tree mortality. Yet the long-term trends in extreme growth reductions remain largely unknown. We analyzed the trends in the proportion of trees exhibiting extreme growth reductions in two Central-European conifer species-Pinus sylvestris (PISY) and Picea abies (PCAB)-between 1901 and 2018. We used a novel approach for extreme growth reduction quantification by relating their size to their mean recurrence interval. Twenty-eight sites throughout Czechia and Slovakia with 1120 ring width series representing high- and low-elevation forests were inspected for extreme growth reductions with recurrence intervals of 15 and 50 years along with their link to climatic drivers. Our results show the greatest growth reductions at low-elevation PCAB sites, indicating high vulnerability of PCAB to drought. The proportions of trees exhibiting extreme growth reductions increased over time at low-elevation PCAB, decreased recently following an abrupt increase in the 1970-1980s at high-elevation PCAB, and showed nonsignificant trends in high- and low-elevation PISY. Climatic drivers of extreme growth reductions, however, shifted over time for all site categories as the proportion of low-temperature-induced extreme growth reductions declined since the 1990s, whereas events caused by drought consistently increased in frequency during the same period. We observed higher growth volatility at the lower range of distribution compared with the upper range margin of PISY and PCAB. This will undoubtedly considerably impact tree growth and vitality as temperatures and incidence of drought in Central Europe are expected to further increase with ongoing climate change.


Asunto(s)
Abies , Picea , Pinus sylvestris , Pinus , Cambio Climático , Sequías , Europa (Continente) , Bosques , Árboles
7.
Glob Chang Biol ; 25(3): 1089-1105, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30536724

RESUMEN

The phenology of wood formation is a critical process to consider for predicting how trees from the temperate and boreal zones may react to climate change. Compared to leaf phenology, however, the determinism of wood phenology is still poorly known. Here, we compared for the first time three alternative ecophysiological model classes (threshold models, heat-sum models and chilling-influenced heat-sum models) and an empirical model in their ability to predict the starting date of xylem cell enlargement in spring, for four major Northern Hemisphere conifers (Larix decidua, Pinus sylvestris, Picea abies and Picea mariana). We fitted models with Bayesian inference to wood phenological data collected for 220 site-years over Europe and Canada. The chilling-influenced heat-sum model received most support for all the four studied species, predicting validation data with a 7.7-day error, which is within one day of the observed data resolution. We conclude that both chilling and forcing temperatures determine the onset of wood formation in Northern Hemisphere conifers. Importantly, the chilling-influenced heat-sum model showed virtually no spatial bias whichever the species, despite the large environmental gradients considered. This suggests that the spring onset of wood formation is far less affected by local adaptation than by environmentally driven plasticity. In a context of climate change, we therefore expect rising winter-spring temperature to exert ambivalent effects on the spring onset of wood formation, tending to hasten it through the accumulation of forcing temperature, but imposing a higher forcing temperature requirement through the lower accumulation of chilling.


Asunto(s)
Modelos Biológicos , Temperatura , Tracheophyta/crecimiento & desarrollo , Madera/crecimiento & desarrollo , Teorema de Bayes , Canadá , Cambio Climático , Europa (Continente) , Estaciones del Año , Xilema/crecimiento & desarrollo
8.
Ann Bot ; 123(5): 783-792, 2019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-30551134

RESUMEN

BACKGROUND AND AIMS: The increasing frequency of disturbances in temperate forests is responsible for the greater numbers of trees with mechanically damaged cambial zones. Adjustment of wood anatomical structure to balance between safe and efficient water conductivity is one mechanism trees employ to cope with mechanical damage. The relative role of disturbances, tree age and climate in shaping xylem conduits and affecting xylem hydraulic conductivity remains unknown. METHODS: We performed an experiment with five different mechanical treatments simulating natural disturbances of juvenile Betula pendula trees (stem scarring, tilting, decapitation, root exposure and stem-base burial). After 3 years, trees were cut down, conduit size and density were measured, and specific hydraulic conductivity of each tree ring was calculated. Between-tree and between-year variability in xylem conductivity was decomposed into effects of tree age, climate and disturbances using linear mixed-effects models. KEY RESULTS: Xylem-specific hydraulic conductivity decreased significantly after treatment in decapitated, tilted and scarred trees. In the last treatment, wood anatomical adjustment was restricted to the area next to the callus tissue zone; in contrast, specific hydraulic conductivity declined over the entire stem circumference after tilting or decapitation. The response of trees with buried stems and exposed roots was generally weak. The overall effect of disturbances on inter-annual variability of wood anatomical structure was greater than the contribution of tree age and climate. CONCLUSIONS: The results indicate that disturbances are important drivers of xylem hydraulic conductivity. Expected increases in the frequency and intensity of disturbances may alter the theoretical capacity of forest stands for water conductance with a feedback to climate.


Asunto(s)
Betula , Árboles , Clima , Agua , Madera , Xilema
10.
Glob Chang Biol ; 22(11): 3804-3813, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27082838

RESUMEN

The interaction between xylem phenology and climate assesses forest growth and productivity and carbon storage across biomes under changing environmental conditions. We tested the hypothesis that patterns of wood formation are maintained unaltered despite the temperature changes across cold ecosystems. Wood microcores were collected weekly or biweekly throughout the growing season for periods varying between 1 and 13 years during 1998-2014 and cut in transverse sections for assessing the onset and ending of the phases of xylem differentiation. The data set represented 1321 trees belonging to 10 conifer species from 39 sites in the Northern Hemisphere and covering an interval of mean annual temperature exceeding 14 K. The phenological events and mean annual temperature of the sites were related linearly, with spring and autumnal events being separated by constant intervals across the range of temperature analysed. At increasing temperature, first enlarging, wall-thickening and mature tracheids appeared earlier, and last enlarging and wall-thickening tracheids occurred later. Overall, the period of wood formation lengthened linearly with the mean annual temperature, from 83.7 days at -2 °C to 178.1 days at 12 °C, at a rate of 6.5 days °C-1 . April-May temperatures produced the best models predicting the dates of wood formation. Our findings demonstrated the uniformity of the process of wood formation and the importance of the environmental conditions occurring at the time of growth resumption. Under warming scenarios, the period of wood formation might lengthen synchronously in the cold biomes of the Northern Hemisphere.


Asunto(s)
Frío , Tracheophyta , Xilema , Ecosistema , Desarrollo de la Planta , Estaciones del Año , Árboles
11.
Curr Biol ; 34(6): 1161-1167.e3, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38325374

RESUMEN

Wood growth is key to understanding the feedback of forest ecosystems to the ongoing climate warming. An increase in spatial synchrony (i.e., coincident changes in distant populations) of spring phenology is one of the most prominent climate responses of forest trees. However, whether temperature variability contributes to an increase in the spatial synchrony of spring phenology and its underlying mechanisms remains largely unknown. Here, we analyzed an extensive dataset of xylem phenology observations of 20 conifer species from 75 sites over the Northern Hemisphere. Along the gradient of increase in temperature variability in the 75 sites, we observed a convergence in the onset of cell enlargement roughly toward the 5th of June, with a convergence in the onset of cell wall thickening toward the summer solstice. The increase in rainfall since the 5th of June is favorable for cell division and expansion, and as the most hours of sunlight are received around the summer solstice, it allows the optimization of carbon assimilation for cell wall thickening. Hence, the convergences can be considered as the result of matching xylem phenological activities to favorable conditions in regions with high temperature variability. Yet, forest trees relying on such consistent seasonal cues for xylem growth could constrain their ability to respond to climate warming, with consequences for the potential growing season length and, ultimately, forest productivity and survival in the future.


Asunto(s)
Tracheophyta , Temperatura , Ecosistema , Cambio Climático , Xilema , Estaciones del Año , Árboles
12.
Sci Total Environ ; 913: 169692, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38160816

RESUMEN

To enhance our understanding of forest carbon sequestration, climate change mitigation and drought impact on forest ecosystems, the availability of high-resolution annual forest growth maps based on tree-ring width (TRW) would provide a significant advancement to the field. Site-specific characteristics, which can be approximated by high-resolution Earth observation by satellites (EOS), emerge as crucial drivers of forest growth, influencing how climate translates into tree growth. EOS provides information on surface reflectance related to forest characteristics and thus can potentially improve the accuracy of forest growth models based on TRW. Through the modelling of TRW using EOS, climate and topography data, we showed that species-specific models can explain up to 52 % of model variance (Quercus petraea), while combining different species results in relatively poor model performance (R2 = 13 %). The integration of EOS into models based solely on climate and elevation data improved the explained variance by 6 % on average. Leveraging these insights, we successfully generated a map of annual TRW for the year 2021. We employed the area of applicability (AOA) approach to delineate the range in which our models are deemed valid. The calculated AOA for the established forest-type models was 73 % of the study region, indicating robust spatial applicability. Notably, unreliable predictions predominantly occurred in the climate margins of our dataset. In conclusion, our large-scale assessment underscores the efficacy of combining climate, EOS and topographic data to develop robust models for mapping annual TRW. This research not only fills a critical void in the current understanding of forest growth dynamics but also highlights the potential of integrated data sources for comprehensive ecosystem assessments.


Asunto(s)
Ecosistema , Tecnología de Sensores Remotos , Bosques , Árboles , Cambio Climático , Europa Oriental , Europa (Continente)
13.
J Hydrol Reg Stud ; 50: 101534, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38145056

RESUMEN

Study region: The Morava River basin, Czech Republic, Danube Basin, Central Europe. Study focus: Hydrological summer extremes represent a prominent natural hazard in Central Europe. River low flows constrain transport and water supply for agriculture, industry and society, and flood events are known to cause material damage and human loss. However, understanding changes in the frequency and magnitude of hydrological extremes is associated with great uncertainty due to the limited number of gauge observations. Here, we compile a tree-ring network to reconstruct the July-September baseflow variability of the Morava River from 1745 to 2018 CE. An ensemble of reconstructions was produced to assess the impact of calibration period length and trend on the long-term mean of reconstruction estimates. The final estimates represent the first baseflow reconstruction based on tree rings from the European continent. Simulated flows and historical documentation provide quantitative and qualitative validation of estimates prior to the 20th century. New hydrological insights for the region: The reconstructions indicate an increased variability of warm-season flow during the past 100 years, with the most extreme high and low flows occurring after the start of instrumental observations. When analyzing the entire reconstruction, the negative trend in baseflow displayed by gauges across the basin after 1960 is not unprecedented. We conjecture that even lower flows could likely occur in the future considering that pre-instrumental trends were not primarily driven by rising temperature (and the evaporative demand) in contrast to the recent trends.

14.
Sci Total Environ ; 838(Pt 3): 156483, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35675888

RESUMEN

Climate controls forest biomass production through direct effects on cambial activity and indirectly through interactions with CO2, air pollution, and nutrient availability. The atmospheric concentration of CO2, sulfur and nitrogen deposition can also exert a significant indirect control on wood formation since these factors influence the stomatal regulation of transpiration and carbon uptake, that is, intrinsic water use efficiency (iWUE). Here we provide 120-year long tree-ring time series of iWUE, stem growth, climatic and combined sulfur and nitrogen (SN) deposition trends for two common tree species, Pinus sylvestris (PISY) and Picea abies (PCAB), at their lower and upper distribution margins in Central Europe. The main goals were to explain iWUE trends using theoretical scenarios including climatic and SN deposition data, and to assess the contribution of climate and iWUE to the observed growth trends. Our results showed that after a notable increase in iWUE between the 1950s and 1980s, this positive trend subsequently slowed down. The substantial rise of iWUE since the 1950s resulted from a combination of an accelerated increase in atmospheric CO2 concentrations (Ca) and a stable level of leaf intercellular CO2 (Ci). The offset of observed iWUE values above the trajectory of a constant Ci/Ca scenario was explained by trends in SN deposition (all sites) together with the variation of drought conditions (low-elevation sites only). Increasing iWUE over the 20th and 21st centuries improved tree growth at low-elevation drought-sensitive sites. In contrast, at high-elevation PCAB sites, growth was mainly stimulated by recent warming. We propose that SN pollution should be considered in order to explain the steep increase in iWUE of conifers in the 20th century throughout Central Europe and other regions with a significant SN deposition history.


Asunto(s)
Pinus , Tracheophyta , Carbono , Dióxido de Carbono/farmacología , Nitrógeno/farmacología , Pinus/fisiología , Azufre , Árboles , Agua
15.
Front Plant Sci ; 12: 613643, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33584770

RESUMEN

Significant alterations of cambial activity might be expected due to climate warming, leading to growing season extension and higher growth rates especially in cold-limited forests. However, assessment of climate-change-driven trends in intra-annual wood formation suffers from the lack of direct observations with a timespan exceeding a few years. We used the Vaganov-Shashkin process-based model to: (i) simulate daily resolved numbers of cambial and differentiating cells; and (ii) develop chronologies of the onset and termination of specific phases of cambial phenology during 1961-2017. We also determined the dominant climatic factor limiting cambial activity for each day. To asses intra-annual model validity, we used 8 years of direct xylogenesis monitoring from the treeline region of the Krkonose Mts. (Czechia). The model exhibits high validity in case of spring phenological phases and a seasonal dynamics of tracheid production, but its precision declines for estimates of autumn phenological phases and growing season duration. The simulations reveal an increasing trend in the number of tracheids produced by cambium each year by 0.42 cells/year. Spring phenological phases (onset of cambial cell growth and tracheid enlargement) show significant shifts toward earlier occurrence in the year (for 0.28-0.34 days/year). In addition, there is a significant increase in simulated growth rates during entire growing season associated with the intra-annual redistribution of the dominant climatic controls over cambial activity. Results suggest that higher growth rates at treeline are driven by (i) temperature-stimulated intensification of spring cambial kinetics, and (ii) decoupling of summer growth rates from the limiting effect of low summer temperature due to higher frequency of climatically optimal days. Our results highlight that the cambial kinetics stimulation by increasing spring and summer temperatures and shifting spring phenology determine the recent growth trends of treeline ecosystems. Redistribution of individual climatic factors controlling cambial activity during the growing season questions the temporal stability of climatic signal of cold forest chronologies under ongoing climate change.

16.
Nat Plants ; 1: 15160, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27251531

RESUMEN

Wood is the main terrestrial biotic reservoir for long-term carbon sequestration(1), and its formation in trees consumes around 15% of anthropogenic carbon dioxide emissions each year(2). However, the seasonal dynamics of woody biomass production cannot be quantified from eddy covariance or satellite observations. As such, our understanding of this key carbon cycle component, and its sensitivity to climate, remains limited. Here, we present high-resolution cellular based measurements of wood formation dynamics in three coniferous forest sites in northeastern France, performed over a period of 3 years. We show that stem woody biomass production lags behind stem-girth increase by over 1 month. We also analyse more general phenological observations of xylem tissue formation in Northern Hemisphere forests and find similar time lags in boreal, temperate, subalpine and Mediterranean forests. These time lags question the extension of the equivalence between stem size increase and woody biomass production to intra-annual time scales(3, 4, 5, 6). They also suggest that these two growth processes exhibit differential sensitivities to local environmental conditions. Indeed, in the well-watered French sites the seasonal dynamics of stem-girth increase matched the photoperiod cycle, whereas those of woody biomass production closely followed the seasonal course of temperature. We suggest that forecasted changes in the annual cycle of climatic factors(7) may shift the phase timing of stem size increase and woody biomass production in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA