Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 43(5): 685-692, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36639898

RESUMEN

The movement of ions in and out of neurons can exert significant effects on neighboring cells. Here we report several experimentally important consequences of activation of the optogenetic chloride pump, halorhodopsin. We recorded extracellular K+ concentration ([K+]extra) in neocortical brain slices prepared from young adult mice (both sexes) which express halorhodopsin in pyramidal cells. Strong halorhodopsin activation induced a pronounced drop in [K+]extra that persisted for the duration of illumination. Pharmacological blockade of K+ channels reduced the amplitude of this drop, indicating that it represents K+ redistribution into cells during the period of hyperpolarization. Halorhodopsin thus drives the inward movement of both Cl- directly, and K+ secondarily. When the illumination period ended, a rebound surge in extracellular [K+] developed over tens of seconds, partly reflecting the previous inward redistribution of K+, but additionally driven by clearance of Cl- coupled to K+ by the potassium-chloride cotransporter, KCC2. The drop in [K+]extra during light activation leads to a small (2-3 mV) hyperpolarization also of other cells that do not express halorhodopsin. Its activation therefore has both direct and indirect inhibitory effects. Finally, we show that persistent strong activation of halorhodopsin causes cortical spreading depolarizations (CSDs), both in vitro and in vivo This novel means of triggering CSDs is unusual, in that the events can arise during the actual period of illumination, when neurons are being hyperpolarized and [K+]extra is low. We suggest that this fundamentally different experimental model of CSDs will open up new avenues of research to explain how they occur naturally.SIGNIFICANCE STATEMENT Halorhodopsin is a light-activated electrogenic chloride pump, which has been widely used to inhibit neurons optogenetically. Here, we demonstrate three previously unrecognized consequences of its use: (1) intense activation leads to secondary movement of K+ ions into the cells; (2) the resultant drop in extracellular [K+] reduces excitability also in other, nonexpressing cells; and (3) intense persistent halorhodopsin activation can trigger cortical spreading depolarization (CSD). Halorhodopsin-induced CSDs can occur when neurons are hyperpolarized and extracellular [K+] is low. This contrasts with the most widely used experimental models that trigger CSDs with high [K+]. Both models, however, are consistent with the hypothesis that CSDs arise following net inward ionic movement into the principal neuron population.


Asunto(s)
Depresión de Propagación Cortical , Potasio , Masculino , Femenino , Ratones , Animales , Potasio/metabolismo , Halorrodopsinas/farmacología , Cloruros/metabolismo , Neuronas/metabolismo , Células Piramidales/metabolismo , Depresión de Propagación Cortical/fisiología
2.
Brain ; 146(7): 2814-2827, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36572952

RESUMEN

Brain-state transitions are readily apparent from changes in brain rhythms,1 but are difficult to predict, suggestive that the underlying cause is latent to passive recording methods. Among the most important transitions, clinically, are the starts of seizures. We here show that an 'active probing' approach may have several important benefits for epileptic management, including by helping predict these transitions. We used mice expressing the optogenetic actuator, channelrhodopsin, in pyramidal cells, allowing this population to be stimulated in isolation. Intermittent stimulation at frequencies as low as 0.033 Hz (period = 30 s) delayed the onset of seizure-like events in an acute brain slice model of ictogenesis, but the effect was lost if stimulation was delivered at even lower frequencies (1/min). Notably, active probing additionally provides advance indication of when seizure-like activity is imminent, revealed by monitoring the postsynaptic response to stimulation. The postsynaptic response, recorded extracellularly, showed an all-or-nothing change in both amplitude and duration, a few hundred seconds before seizure-like activity began-a sufficient length of time to provide a helpful warning of an impending seizure. The change in the postsynaptic response then persisted for the remainder of the recording, indicative of a state change from a pre-epileptic to a pro-epileptic network. This occurred in parallel with a large increase in the stimulation-triggered Ca2+ entry into pyramidal dendrites, and a step increase in the number of evoked postsynaptic action potentials, both consistent with a reduction in the threshold for dendritic action potentials. In 0 Mg2+ bathing media, the reduced threshold was not associated with changes in glutamatergic synaptic function, nor of GABAergic release from either parvalbumin or somatostatin interneurons, but simulations indicate that the step change in the optogenetic response can instead arise from incremental increases in intracellular [Cl-]. The change in the response to stimulation was replicated by artificially raising intracellular [Cl-], using the optogenetic chloride pump, halorhodopsin. By contrast, increases in extracellular [K+] cannot account for the firing patterns in the response to stimulation, although this, and other cellular changes, may contribute to ictal initiation in other circumstances. We describe how these various cellular changes form a synergistic network of positive feedback mechanisms, which may explain the precipitous nature of seizure onset. This model of seizure initiation draws together several major lines of epilepsy research as well as providing an important proof-of-principle regarding the utility of open-loop brain stimulation for clinical management of the condition.


Asunto(s)
Epilepsia , Optogenética , Ratones , Animales , Convulsiones , Encéfalo , Células Piramidales/fisiología , Potenciales de Acción/fisiología
3.
Brain ; 146(3): 850-857, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36315647

RESUMEN

Early infantile developmental and epileptic encephalopathies are devastating conditions, generally of genetic origin, but the pathological mechanisms often remain obscure. A major obstacle in this field of research is the difficulty of studying cortical brain development in humans, at the relevant time period in utero. To address this, we established an in vitro assay to study the impact of gene variants on the developing human brain by using living organotypic cultures of the human subplate and neighbouring cortical regions, prepared from ethically sourced, 14-17 post-conception week brain tissue (www.hdbr.org). We were able to maintain cultures for several months, during which time the gross anatomical structures of the cortical plate, subplate and marginal zone persisted, while neurons continued to develop morphologically and form new synaptic networks. This preparation thus permits the study of genetic manipulations and their downstream effects on an intact developing human cortical network. We focused on STXBP1 haploinsufficiency, which is among the most common genetic causes of developmental and epileptic encephalopathy. This was induced using shRNA interference, leading to impaired synaptic function and a reduced density of glutamatergic synapses. We thereby provide a critical proof-of-principle for how to study the impact of any gene of interest on the development of the human cortex.


Asunto(s)
Encefalopatías , Epilepsia Generalizada , Humanos , Neuronas/metabolismo , Sinapsis/metabolismo , Encéfalo/metabolismo , Proteínas Munc18/genética
4.
Brain ; 146(12): 5209-5223, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37536281

RESUMEN

The relationship between clinically accessible epileptic biomarkers and neuronal activity underlying the transition to seizure is complex, potentially leading to imprecise delineation of epileptogenic brain areas. In particular, the pattern of interneuronal firing at seizure onset remains under debate, with some studies demonstrating increased firing and others suggesting reductions. Previous study of neocortical sites suggests that seizure recruitment occurs upon failure of inhibition, with intact feedforward inhibition in non-recruited territories. We investigated whether the same principle applies in limbic structures. We analysed simultaneous electrocorticography (ECoG) and neuronal recordings of 34 seizures in a cohort of 19 patients (10 male, 9 female) undergoing surgical evaluation for pharmacoresistant focal epilepsy. A clustering approach with five quantitative metrics computed from ECoG and multiunit data was used to distinguish three types of site-specific activity patterns during seizures, which at times co-existed within seizures. Overall, 156 single units were isolated, subclassified by cell-type and tracked through the seizure using our previously published methods to account for impacts of increased noise and single-unit waveshape changes caused by seizures. One cluster was closely associated with clinically defined seizure onset or spread. Entrainment of high-gamma activity to low-frequency ictal rhythms was the only metric that reliably identified this cluster at the level of individual seizures (P < 0.001). A second cluster demonstrated multi-unit characteristics resembling those in the first cluster, without concomitant high-gamma entrainment, suggesting feedforward effects from the seizure. The last cluster captured regions apparently unaffected by the ongoing seizure. Across all territories, the majority of both excitatory and inhibitory neurons reduced (69.2%) or ceased firing (21.8%). Transient increases in interneuronal firing rates were rare (13.5%) but showed evidence of intact feedforward inhibition, with maximal firing rate increases and waveshape deformations in territories not fully recruited but showing feedforward activity from the seizure, and a shift to burst-firing in seizure-recruited territories (P = 0.014). This study provides evidence for entrained high-gamma activity as an accurate biomarker of ictal recruitment in limbic structures. However, reduced neuronal firing suggested preserved inhibition in mesial temporal structures despite simultaneous indicators of seizure recruitment, in contrast to the inhibitory collapse scenario documented in neocortex. Further study is needed to determine if this activity is ubiquitous to hippocampal seizures or indicates a 'seizure-responsive' state in which the hippocampus is not the primary driver. If the latter, distinguishing such cases may help to refine the surgical treatment of mesial temporal lobe epilepsy.


Asunto(s)
Epilepsia del Lóbulo Temporal , Neocórtex , Humanos , Masculino , Femenino , Electroencefalografía/métodos , Convulsiones , Epilepsia del Lóbulo Temporal/cirugía , Neuronas/fisiología
5.
Epilepsia ; 64 Suppl 3: S37-S48, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37183507

RESUMEN

A critical question regarding how focal seizures start is whether we can identify particular cell classes that drive the pathological process. This was the topic for debate at the recent International Conference for Technology and Analysis of Seizures (ICTALS) meeting (July 2022, Bern, CH) that we summarize here. The debate has been fueled in recent times by the introduction of powerful new ways to manipulate subpopulations of cells in relative isolation, mostly using optogenetics. The motivation for resolving the debate is to identify novel targets for therapeutic interventions through a deeper understanding of the etiology of seizures.


Asunto(s)
Neuronas , Convulsiones , Humanos , Convulsiones/etiología , Optogenética , Tecnología
6.
Proc Natl Acad Sci U S A ; 117(20): 11048-11058, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32366665

RESUMEN

Personalized medicine requires that treatments adapt to not only the patient but also changing factors within each individual. Although epilepsy is a dynamic disorder characterized by pathological fluctuations in brain state, surprisingly little is known about whether and how seizures vary in the same patient. We quantitatively compared within-patient seizure network evolutions using intracranial electroencephalographic (iEEG) recordings of over 500 seizures from 31 patients with focal epilepsy (mean 16.5 seizures per patient). In all patients, we found variability in seizure paths through the space of possible network dynamics. Seizures with similar pathways tended to occur closer together in time, and a simple model suggested that seizure pathways change on circadian and/or slower timescales in the majority of patients. These temporal relationships occurred independent of whether the patient underwent antiepileptic medication reduction. Our results suggest that various modulatory processes, operating at different timescales, shape within-patient seizure evolutions, leading to variable seizure pathways that may require tailored treatment approaches.


Asunto(s)
Epilepsias Parciales/metabolismo , Convulsiones/metabolismo , Variación Biológica Individual , Electrocorticografía/métodos , Humanos , Modelos Biológicos
7.
J Neurosci ; 41(4): 766-779, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33229500

RESUMEN

Analyzing neuronal activity during human seizures is pivotal to understanding mechanisms of seizure onset and propagation. These analyses, however, invariably using extracellular recordings, are greatly hindered by various phenomena that are well established in animal studies: changes in local ionic concentration, changes in ionic conductance, and intense, hypersynchronous firing. The first two alter the action potential waveform, whereas the third increases the "noise"; all three factors confound attempts to detect and classify single neurons. To address these analytical difficulties, we developed a novel template-matching-based spike sorting method, which enabled identification of 1239 single neurons in 27 patients (13 female) with intractable focal epilepsy, that were tracked throughout multiple seizures. These new analyses showed continued neuronal firing with widespread intense activation and stereotyped action potential alterations in tissue that was invaded by the seizure: neurons displayed increased waveform duration (p < 0.001) and reduced amplitude (p < 0.001), consistent with prior animal studies. By contrast, neurons in "penumbral" regions (those receiving intense local synaptic drive from the seizure but without neuronal evidence of local seizure invasion) showed stable waveforms. All neurons returned to their preictal waveforms after seizure termination. We conclude that the distinction between "core" territories invaded by the seizure versus "penumbral" territories is evident at the level of single neurons. Furthermore, the increased waveform duration and decreased waveform amplitude are neuron-intrinsic hallmarks of seizure invasion that impede traditional spike sorting and could be used as defining characteristics of local recruitment.SIGNIFICANCE STATEMENT Animal studies consistently show marked changes in action potential waveform during epileptic discharges, but acquiring similar evidence in humans has proven difficult. Assessing neuronal involvement in ictal events is pivotal to understanding seizure dynamics and in defining clinical localization of epileptic pathology. Using a novel method to track neuronal firing, we analyzed microelectrode array recordings of spontaneously occurring human seizures, and here report two dichotomous activity patterns. In cortex that is recruited to the seizure, neuronal firing rates increase and waveforms become longer in duration and shorter in amplitude as the neurons are recruited to the seizure, while penumbral tissue shows stable action potentials, in keeping with the "dual territory" model of seizure dynamics.


Asunto(s)
Electroencefalografía , Neuronas , Convulsiones/fisiopatología , Potenciales de Acción , Adulto , Ondas Encefálicas , Corteza Cerebral/fisiopatología , Epilepsia Refractaria/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reclutamiento Neurofisiológico , Análisis de Ondículas , Adulto Joven
8.
J Neurophysiol ; 127(1): 86-98, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34788174

RESUMEN

The transcriptional coactivator, PGC-1α (peroxisome proliferator-activated receptor γ coactivator 1α), plays a key role in coordinating energy requirement within cells. Its importance is reflected in the growing number of psychiatric and neurological conditions that have been associated with reduced PGC-1α levels. In cortical networks, PGC-1α is required for the induction of parvalbumin (PV) expression in interneurons, and PGC-1α deficiency affects synchronous GABAergic release. It is unknown, however, how this affects cortical excitability. We show here that knocking down PGC-1α specifically in the PV-expressing cells (PGC-1αPV-/-) blocks the activity-dependent regulation of the synaptic proteins, SYT2 and CPLX1. More surprisingly, this cell class-specific knockout of PGC-1α appears to have a novel antiepileptic effect, as assayed in brain slices bathed in 0 Mg2+ media. The rate of occurrence of preictal discharges developed approximately equivalently in wild-type and PGC-1αPV-/- brain slices, but the intensity of these discharges was lower in PGC-1αPV-/- slices, as evident from the reduced power in the γ range and reduced firing rates in both PV interneurons and pyramidal cells during these discharges. Reflecting this reduced intensity in the preictal discharges, the PGC-1αPV-/- brain slices experienced many more discharges before transitioning into a seizure-like event. Consequently, there was a large increase in the latency to the first seizure-like event in brain slices lacking PGC-1α in PV interneurons. We conclude that knocking down PGC-1α limits the range of PV interneuron firing and this slows the pathophysiological escalation during ictogenesis.NEW & NOTEWORTHY Parvalbumin expressing interneurons are considered to play an important role in regulating cortical activity. We were surprised, therefore, to find that knocking down the transcriptional coactivator, PGC-1α, specifically in this class of interneurons appears to slow ictogenesis. This anti-ictogenic effect is associated with reduced activity in preictal discharges, but with a far longer period of these discharges before the first seizure-like events finally start. Thus, PGC-1α knockdown may promote schizophrenia while reducing epileptic tendencies.


Asunto(s)
Excitabilidad Cortical/fisiología , Interneuronas/metabolismo , Neocórtex/metabolismo , Parvalbúminas/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Células Piramidales/metabolismo , Convulsiones/metabolismo , Convulsiones/fisiopatología , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/deficiencia
9.
PLoS Comput Biol ; 16(5): e1007932, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32453795

RESUMEN

Fast synaptic inhibition is a critical determinant of neuronal output, with subcellular targeting of synaptic inhibition able to exert different transformations of the neuronal input-output function. At the receptor level, synaptic inhibition is primarily mediated by chloride-permeable Type A GABA receptors. Consequently, dynamics in the neuronal chloride concentration can alter the functional properties of inhibitory synapses. How differences in the spatial targeting of inhibitory synapses interact with intracellular chloride dynamics to modulate the input-output function of neurons is not well understood. To address this, we developed computational models of multi-compartment neurons that incorporate experimentally parametrised mechanisms to account for neuronal chloride influx, diffusion, and extrusion. We found that synaptic input (either excitatory, inhibitory, or both) can lead to subcellular variations in chloride concentration, despite a uniform distribution of chloride extrusion mechanisms. Accounting for chloride changes resulted in substantial alterations in the neuronal input-output function. This was particularly the case for peripherally targeted dendritic inhibition where dynamic chloride compromised the ability of inhibition to offset neuronal input-output curves. Our simulations revealed that progressive changes in chloride concentration mean that the neuronal input-output function is not static but varies significantly as a function of the duration of synaptic drive. Finally, we found that the observed effects of dynamic chloride on neuronal output were mediated by changes in the dendritic reversal potential for GABA. Our findings provide a framework for understanding the computational effects of chloride dynamics on dendritically targeted synaptic inhibition.


Asunto(s)
Cloruros/química , Dendritas/fisiología , Neuronas/fisiología , Receptores de GABA/fisiología , Sinapsis/fisiología , Potenciales de Acción , Animales , Encéfalo/fisiología , Simulación por Computador , Hipocampo/fisiología , Humanos , Cinética , Masculino , Modelos Neurológicos , Técnicas de Cultivo de Órganos , Unión Proteica , Células Piramidales/fisiología , Ratas , Ratas Wistar , Receptores de GABA-A/fisiología
10.
J Neurophysiol ; 123(3): 1133-1143, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32023140

RESUMEN

Neocortical circuits exhibit a rich dynamic repertoire, and their ability to achieve entrainment (adjustment of their frequency to match the input frequency) is thought to support many cognitive functions and indicate functional flexibility. Although previous studies have explored the influence of various circuit properties on this phenomenon, the role of divisive gain modulation (or divisive inhibition) is unknown. This gain control mechanism is thought to be delivered mainly by the soma-targeting interneurons in neocortical microcircuits. In this study, we use a neural mass model of the neocortical microcircuit (extended Wilson-Cowan model) featuring both soma-targeting and dendrite-targeting interneuronal subpopulations to investigate the role of divisive gain modulation in entrainment. Our results demonstrate that the presence of divisive inhibition in the microcircuit, as delivered by the soma-targeting interneurons, enables its entrainment to a wider range of input frequencies. Divisive inhibition also promotes a faster entrainment, with the microcircuit needing less time to converge to the fully entrained state. We suggest that divisive inhibition, working alongside subtractive inhibition, allows for more adaptive oscillatory responses in neocortical circuits and, thus, supports healthy brain functioning.NEW & NOTEWORTHY We introduce a computational neocortical microcircuit model that features two inhibitory neural populations, with one providing subtractive and the other divisive inhibition to the excitatory population. We demonstrate that divisive inhibition widens the range of input frequencies to which the microcircuit can become entrained and diminishes the time needed to reach full entrainment. We suggest that divisive inhibition enables more adaptive oscillatory activity, with important implications for both normal and pathological brain function.


Asunto(s)
Interneuronas/fisiología , Modelos Neurológicos , Neocórtex/fisiología , Red Nerviosa/fisiología , Inhibición Neural/fisiología , Redes Neurales de la Computación , Animales , Humanos
11.
Epilepsia ; 61(10): 2106-2118, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32797628

RESUMEN

OBJECTIVE: Current medicines are ineffective in approximately one-third of people with epilepsy. Therefore, new antiseizure drugs are urgently needed to address this problem of pharmacoresistance. However, traditional rodent seizure and epilepsy models are poorly suited to high-throughput compound screening. Furthermore, testing in a single species increases the chance that therapeutic compounds act on molecular targets that may not be conserved in humans. To address these issues, we developed a pipeline approach using four different organisms. METHODS: We sequentially employed compound library screening in the zebrafish, Danio rerio, chemical genetics in the worm, Caenorhabditis elegans, electrophysiological analysis in mouse and human brain slices, and preclinical validation in mouse seizure models to identify novel antiseizure drugs and their molecular mechanism of action. RESULTS: Initially, a library of 1690 compounds was screened in an acute pentylenetetrazol seizure model using D rerio. From this screen, the compound chlorothymol was identified as an effective anticonvulsant not only in fish, but also in worms. A subsequent genetic screen in C elegans revealed the molecular target of chlorothymol to be LGC-37, a worm γ-aminobutyric acid type A (GABAA ) receptor subunit. This GABAergic effect was confirmed using in vitro brain slice preparations from both mice and humans, as chlorothymol was shown to enhance tonic and phasic inhibition and this action was reversed by the GABAA receptor antagonist, bicuculline. Finally, chlorothymol exhibited in vivo anticonvulsant efficacy in several mouse seizure assays, including the 6-Hz 44-mA model of pharmacoresistant seizures. SIGNIFICANCE: These findings establish a multiorganism approach that can identify compounds with evolutionarily conserved molecular targets and translational potential, and so may be useful in drug discovery for epilepsy and possibly other conditions.


Asunto(s)
Anticonvulsivantes/química , Anticonvulsivantes/uso terapéutico , Descubrimiento de Drogas/métodos , Agonistas de Receptores de GABA-A/química , Agonistas de Receptores de GABA-A/uso terapéutico , Receptores de GABA-A/metabolismo , Convulsiones/tratamiento farmacológico , Animales , Anticonvulsivantes/farmacología , Caenorhabditis elegans , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas/tendencias , Femenino , Agonistas de Receptores de GABA-A/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos , Convulsiones/genética , Convulsiones/metabolismo , Especificidad de la Especie , Timol/química , Timol/farmacología , Timol/uso terapéutico , Pez Cebra
12.
Brain ; 142(11): 3482-3501, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31553050

RESUMEN

Status epilepticus is defined as a state of unrelenting seizure activity. Generalized convulsive status epilepticus is associated with a rapidly rising mortality rate, and thus constitutes a medical emergency. Benzodiazepines, which act as positive modulators of chloride (Cl-) permeable GABAA receptors, are indicated as first-line treatment, but this is ineffective in many cases. We found that 48% of children presenting with status epilepticus were unresponsive to benzodiazepine treatment, and critically, that the duration of status epilepticus at the time of treatment is an important predictor of non-responsiveness. We therefore investigated the cellular mechanisms that underlie acquired benzodiazepine resistance, using rodent organotypic and acute brain slices. Removing Mg2+ ions leads to an evolving pattern of epileptiform activity, and eventually to a persistent state of repetitive discharges that strongly resembles clinical EEG recordings of status epilepticus. We found that diazepam loses its antiseizure efficacy and conversely exacerbates epileptiform activity during this stage of status epilepticus-like activity. Interestingly, a low concentration of the barbiturate phenobarbital had a similar exacerbating effect on status epilepticus-like activity, while a high concentration of phenobarbital was effective at reducing or preventing epileptiform discharges. We then show that the persistent status epilepticus-like activity is associated with a reduction in GABAA receptor conductance and Cl- extrusion capability. We explored the effect on intraneuronal Cl- using both gramicidin, perforated-patch clamp recordings and Cl- imaging. This showed that during status epilepticus-like activity, reduced Cl- extrusion capacity was further exacerbated by activity-dependent Cl- loading, resulting in a persistently high intraneuronal Cl-. Consistent with these results, we found that optogenetic stimulation of GABAergic interneurons in the status epilepticus-like state, actually enhanced epileptiform activity in a GABAAR dependent manner. Together our findings describe a novel potential mechanism underlying benzodiazepine-resistant status epilepticus, with relevance to how this life-threatening condition should be managed in the clinic.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Benzodiazepinas/uso terapéutico , Epilepsia Refractaria/fisiopatología , Aminoácidos Excitadores , Transducción de Señal , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/fisiopatología , Ácido gamma-Aminobutírico , Animales , Preescolar , Diazepam , Resistencia a Medicamentos , Epilepsia/inducido químicamente , Epilepsia/fisiopatología , Humanos , Lactante , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Fenobarbital/farmacología , Ratas , Ratas Wistar , Receptores de GABA-A/efectos de los fármacos
13.
J Physiol ; 597(7): 2079-2096, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30681139

RESUMEN

KEY POINTS: Local neocortical and hippocampal territories show different and sterotypical patterns of acutely evolving, epileptiform activity. Neocortical and entorhinal networks show tonic-clonic-like events, but the main hippocampal territories do not, unless it is relayed from the other areas. Transitions in the pattern of locally recorded epileptiform activity can be indicative of a shift in the source of pathological activity, and may spread through both synaptic and non-synaptic means. Hippocampal epileptiform activity is promoted by 4-aminopyridine and inhibited by GABAB receptor agonists, and appears far more sensitive to these drugs than neocortical activity. These signature features of local epileptiform activity can provide useful insight into the primary source of ictal activity, aiding both experimental and clinical investigation. ABSTRACT: Understanding the nature of epileptic state transitions remains a major goal for epilepsy research. Simple in vitro models offer unique experimental opportunities that we exploit to show that such transitions can arise from shifts in the ictal source of the activity. These transitions reflect the fact that cortical territories differ both in the type of epileptiform activity they can sustain and in their susceptibility to drug manipulation. In the zero-Mg2+ model, the earliest epileptiform activity is restricted to neocortical and entorhinal networks. Hippocampal bursting only starts much later, and triggers a marked transition in neo-/entorhinal cortical activity. Thereafter, the hippocampal activity acts as a pacemaker, entraining the other territories to their discharge pattern. This entrainment persists following transection of the major axonal pathways between hippocampus and cortex, indicating that it can be mediated through a non-synaptic route. Neuronal discharges are associated with large rises in extracellular [K+ ], but we show that these are very localized, and therefore are not the means of entraining distant cortical areas. We conclude instead that the entrainment occurs through weak field effects distant from the pacemaker, but which are highly effective at recruiting other brain territories that are already hyperexcitable. The hippocampal epileptiform activity appears unusually susceptible to drugs that impact on K+ conductances. These findings demonstrate that the local circuitry gives rise to stereotypical epileptic activity patterns, but these are also influenced by both synaptic and non-synaptic long-range effects. Our results have important implications for our understanding of epileptic propagation and anti-epileptic drug action.


Asunto(s)
4-Aminopiridina/farmacología , Epilepsia , Hipocampo/efectos de los fármacos , Neocórtex/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Estimulación Eléctrica , Electrofisiología , Femenino , Masculino , Ratones , Vías Nerviosas , Neuronas/fisiología
14.
J Physiol ; 597(8): 2297-2314, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30784081

RESUMEN

KEY POINTS: There is a rapid interneuronal response to focal activity in cortex, which restrains laterally propagating activity, including spreading epileptiform activity. The interneuronal response involves intense activation of both parvalbumin- and somatostatin-expressing interneurons. Interneuronal bursting is time-locked to glutamatergic barrages in the pre-ictal period. Ca2+ imaging using conditional expression of GCaMP6f provides an accurate readout of the evolving firing patterns in both types of interneuron. The activation profiles of the two interneuronal classes are temporally offset, with the parvalbumin population being activated first, and typically, at higher rates. ABSTRACT: Previous work has described powerful restraints on laterally spreading activity in cortical networks, arising from a rapid feedforward interneuronal response to focal activity. This response is particularly prominent ahead of an ictal wavefront. Parvalbumin-positive interneurons are considered to be critically involved in this feedforward inhibition, but it is not known what role, if any, is provided by somatostatin-expressing interneurons, which target the distal dendrites of pyramidal cells. We used a combination of electrophysiology and cell class-specific Ca2+ imaging in mouse brain slices bathed in 0 Mg2+ medium to characterize the activity profiles of pyramidal cells and parvalbumin- and somatostatin-expressing interneurons during epileptiform activation. The GCaMP6f signal strongly correlates with the level of activity for both interneuronal classes. Both interneuronal classes participate in the feedfoward inhibition. This contrasts starkly with the pattern of pyramidal recruitment, which is greatly delayed. During these barrages, both sets of interneurons show intense bursting, at rates up to 300Hz, which is time-locked to the glutamatergic barrages. The activity of parvalbumin-expressing interneurons appears to peak early in the pre-ictal period, and can display depolarizing block during the ictal event. In contrast, somatostatin-expressing interneuronal activity peaks significantly later, and firing persists throughout the ictal events. Interictal events appear to be very similar to the pre-ictal period, albeit with slightly lower firing rates. Thus, the inhibitory restraint arises from a coordinated pattern of activity in the two main classes of cortical interneurons.


Asunto(s)
Interneuronas/fisiología , Parvalbúminas/fisiología , Somatostatina/fisiología , Animales , Encéfalo/fisiología , Femenino , Masculino , Ratones Transgénicos
15.
Neurobiol Dis ; 127: 303-311, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30898669

RESUMEN

The cellular activity underlying human focal seizures, and its relationship to key signatures in the EEG recordings used for therapeutic purposes, has not been well characterized despite many years of investigation both in laboratory and clinical settings. The increasing use of microelectrodes in epilepsy surgery patients has made it possible to apply principles derived from laboratory research to the problem of mapping the spatiotemporal structure of human focal seizures, and characterizing the corresponding EEG signatures. In this review, we describe results from human microelectrode studies, discuss some data interpretation pitfalls, and explain the current understanding of the key mechanisms of ictogenesis and seizure spread.


Asunto(s)
Encéfalo/fisiopatología , Epilepsia/fisiopatología , Neuronas/fisiología , Convulsiones/fisiopatología , Electrodos Implantados , Electroencefalografía , Humanos , Microelectrodos
16.
J Neurophysiol ; 120(5): 2358-2367, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30110232

RESUMEN

Changes in gene expression are an important mechanism by which activity levels are regulated in the nervous system. It is not known, however, how network activity influences gene expression in interneurons; since they themselves provide negative feedback in the form of synaptic inhibition, there exists a potential conflict between their cellular homeostatic tendencies and those of the network. We present a means of examining this issue, utilizing simple in vitro models showing different patterns of intense network activity. We found that the degree of concurrent pyramidal activation changed the polarity of the induced gene transcription. When pyramidal cells were quiescent, interneuronal activation led to an upregulation of glutamate decarboxylase 1 ( GAD1) and parvalbumin ( Pvalb) gene transcriptions, mediated by activation of the Ras/extracellular signal-related kinase mitogen-activated protein kinase (Ras/ERK MAPK) pathway. In contrast, coactivation of pyramidal cells led to an ionotropic glutamate receptor N-methyl-d-aspartate 2B-dependent decrease in transcription. Our results demonstrate a hitherto unrecognized complexity in how activity-dependent gene expression changes are manifest in cortical networks. NEW & NOTEWORTHY We demonstrate a novel feedback mechanism in cortical networks, by which glutamatergic drive, mediated through the Ras/ERK MAPK pathway, regulates gene transcription in interneurons. Using a unique feature of certain in vitro epilepsy models, we show that without this glutamatergic feedback, intense activation of interneurons causes parvalbumin and glutamate decarboxylase 1 mRNA expression to increase. If, on the other hand, pyramidal cells are coactivated with interneurons, this leads to a downregulation of these genes.


Asunto(s)
Retroalimentación Fisiológica , Glutamato Descarboxilasa/genética , Interneuronas/metabolismo , Potenciales de la Membrana , Parvalbúminas/genética , Células Piramidales/metabolismo , Animales , Glutamato Descarboxilasa/metabolismo , Interneuronas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Parvalbúminas/metabolismo , Células Piramidales/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas ras/metabolismo
17.
PLoS Comput Biol ; 13(5): e1005475, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28472032

RESUMEN

Focal seizures are episodes of pathological brain activity that appear to arise from a localised area of the brain. The onset patterns of focal seizure activity have been studied intensively, and they have largely been distinguished into two types-low amplitude fast oscillations (LAF), or high amplitude spikes (HAS). Here we explore whether these two patterns arise from fundamentally different mechanisms. Here, we use a previously established computational model of neocortical tissue, and validate it as an adequate model using clinical recordings of focal seizures. We then reproduce the two onset patterns in their most defining properties and investigate the possible mechanisms underlying the different focal seizure onset patterns in the model. We show that the two patterns are associated with different mechanisms at the spatial scale of a single ECoG electrode. The LAF onset is initiated by independent patches of localised activity, which slowly invade the surrounding tissue and coalesce over time. In contrast, the HAS onset is a global, systemic transition to a coexisting seizure state triggered by a local event. We find that such a global transition is enabled by an increase in the excitability of the "healthy" surrounding tissue, which by itself does not generate seizures, but can support seizure activity when incited. In our simulations, the difference in surrounding tissue excitability also offers a simple explanation of the clinically reported difference in surgical outcomes. Finally, we demonstrate in the model how changes in tissue excitability could be elucidated, in principle, using active stimulation. Taken together, our modelling results suggest that the excitability of the tissue surrounding the seizure core may play a determining role in the seizure onset pattern, as well as in the surgical outcome.


Asunto(s)
Encéfalo/fisiopatología , Simulación por Computador , Modelos Neurológicos , Convulsiones/fisiopatología , Biología Computacional , Humanos
18.
J Neurosci ; 35(20): 7715-26, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25995461

RESUMEN

Altered inhibitory function is an important facet of epileptic pathology. A key concept is that GABAergic activity can become excitatory if intraneuronal chloride rises. However, it has proved difficult to separate the role of raised chloride from other contributory factors in complex network phenomena, such as epileptic pathology. Therefore, we asked what patterns of activity are associated with chloride dysregulation by making novel use of Halorhodopsin to load clusters of mouse pyramidal cells artificially with Cl(-). Brief (1-10 s) activation of Halorhodopsin caused substantial positive shifts in the GABAergic reversal potential that were proportional to the charge transfer during the illumination and in adult neocortical pyramidal neurons decayed with a time constant of τ = 8.0 ± 2.8s. At the network level, these positive shifts in EGABA produced a transient rise in network excitability, with many distinctive features of epileptic foci, including high-frequency oscillations with evidence of out-of-phase firing (Ibarz et al., 2010). We show how such firing patterns can arise from quite small shifts in the mean intracellular Cl(-) level, within heterogeneous neuronal populations. Notably, however, chloride loading by itself did not trigger full ictal events, even with additional electrical stimulation to the underlying white matter. In contrast, when performed in combination with low, subepileptic levels of 4-aminopyridine, Halorhodopsin activation rapidly induced full ictal activity. These results suggest that chloride loading has at most an adjunctive role in ictogenesis. Our simulations also show how chloride loading can affect the jitter of action potential timing associated with imminent recruitment to an ictal event (Netoff and Schiff, 2002).


Asunto(s)
Potenciales de Acción , Cloruros/farmacología , Epilepsia/fisiopatología , Neuronas GABAérgicas/fisiología , Células Piramidales/fisiología , 4-Aminopiridina/farmacología , Animales , Células Cultivadas , Cloruros/metabolismo , Epilepsia/metabolismo , Espacio Extracelular/metabolismo , Neuronas GABAérgicas/efectos de los fármacos , Halorrodopsinas/metabolismo , Ratones , Neocórtex/citología , Neocórtex/metabolismo , Neocórtex/fisiopatología , Bloqueadores de los Canales de Potasio/farmacología , Células Piramidales/efectos de los fármacos , Ratas
19.
Stem Cells ; 33(7): 2306-19, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25919237

RESUMEN

Neural activity is tightly coupled to energy consumption, particularly sugars such as glucose. However, we find that, unlike mature neurons and astrocytes, neural stem/progenitor cells (NSPCs) do not require glucose to sustain aerobic respiration. NSPCs within the adult subventricular zone (SVZ) express enzymes required for fatty acid oxidation and show sustained increases in oxygen consumption upon treatment with a polyunsaturated fatty acid. NSPCs also demonstrate sustained decreases in oxygen consumption upon treatment with etomoxir, an inhibitor of fatty acid oxidation. In addition, etomoxir decreases the proliferation of SVZ NSPCs without affecting cellular survival. Finally, higher levels of neurogenesis can be achieved in aged mice by ectopically expressing proliferator-activated receptor gamma coactivator 1 alpha (PGC1α), a factor that increases cellular aerobic capacity by promoting mitochondrial biogenesis and metabolic gene transcription. Regulation of metabolic fuel availability could prove a powerful tool in promoting or limiting cellular proliferation in the central nervous system. Stem Cells 2015;33:2306-2319.


Asunto(s)
Ácidos Grasos/metabolismo , Células-Madre Neurales/metabolismo , Células Madre/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Humanos , Ventrículos Laterales , Ratones
20.
Brain ; 138(Pt 10): 2891-906, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26187332

RESUMEN

Spike-sorting algorithms have been used to identify the firing patterns of isolated neurons ('single units') from implanted electrode recordings in patients undergoing assessment for epilepsy surgery, but we do not know their potential for providing helpful clinical information. It is important therefore to characterize both the stability of these recordings and also their context. A critical consideration is where the units are located with respect to the focus of the pathology. Recent analyses of neuronal spiking activity, recorded over extended spatial areas using microelectrode arrays, have demonstrated the importance of considering seizure activity in terms of two distinct spatial territories: the ictal core and penumbral territories. The pathological information in these two areas, however, is likely to be very different. We investigated, therefore, whether units could be followed reliably over prolonged periods of times in these two areas, including during seizure epochs. We isolated unit recordings from several hundred neurons from four patients undergoing video-telemetry monitoring for surgical evaluation of focal neocortical epilepsies. Unit stability could last in excess of 40 h, and across multiple seizures. A key finding was that in the penumbra, spike stereotypy was maintained even during the seizure. There was a net tendency towards increased penumbral firing during the seizure, although only a minority of units (10-20%) showed significant changes over the baseline period, and notably, these also included neurons showing significant reductions in firing. In contrast, within the ictal core territories, regions characterized by intense hypersynchronous multi-unit firing, our spike sorting algorithms failed as the units were incorporated into the seizure activity. No spike sorting was possible from that moment until the end of the seizure, but recovery of the spike shape was rapid following seizure termination: some units reappeared within tens of seconds of the end of the seizure, and over 80% reappeared within 3 min (τrecov = 104 ± 22 s). The recovery of the mean firing rate was close to pre-ictal levels also within this time frame, suggesting that the more protracted post-ictal state cannot be explained by persistent cellular neurophysiological dysfunction in either the penumbral or the core territories. These studies lay the foundation for future investigations of how these recordings may inform clinical practice.See Kimchi and Cash (doi:10.1093/awv264) for a scientific commentary on this article.


Asunto(s)
Potenciales de Acción/fisiología , Ondas Encefálicas/fisiología , Neocórtex/patología , Neuronas/patología , Convulsiones/patología , Convulsiones/fisiopatología , Adulto , Algoritmos , Animales , Animales Recién Nacidos , Electrodos , Electroencefalografía , Humanos , Técnicas In Vitro , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA