Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 584(7821): 425-429, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32604404

RESUMEN

On 21 February 2020, a resident of the municipality of Vo', a small town near Padua (Italy), died of pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection1. This was the first coronavirus disease 19 (COVID-19)-related death detected in Italy since the detection of SARS-CoV-2 in the Chinese city of Wuhan, Hubei province2. In response, the regional authorities imposed the lockdown of the whole municipality for 14 days3. Here we collected information on the demography, clinical presentation, hospitalization, contact network and the presence of SARS-CoV-2 infection in nasopharyngeal swabs for 85.9% and 71.5% of the population of Vo' at two consecutive time points. From the first survey, which was conducted around the time the town lockdown started, we found a prevalence of infection of 2.6% (95% confidence interval (CI): 2.1-3.3%). From the second survey, which was conducted at the end of the lockdown, we found a prevalence of 1.2% (95% CI: 0.8-1.8%). Notably, 42.5% (95% CI: 31.5-54.6%) of the confirmed SARS-CoV-2 infections detected across the two surveys were asymptomatic (that is, did not have symptoms at the time of swab testing and did not develop symptoms afterwards). The mean serial interval was 7.2 days (95% CI: 5.9-9.6). We found no statistically significant difference in the viral load of symptomatic versus asymptomatic infections (P = 0.62 and 0.74 for E and RdRp genes, respectively, exact Wilcoxon-Mann-Whitney test). This study sheds light on the frequency of asymptomatic SARS-CoV-2 infection, their infectivity (as measured by the viral load) and provides insights into its transmission dynamics and the efficacy of the implemented control measures.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Brotes de Enfermedades/prevención & control , Pandemias/prevención & control , Neumonía Viral/epidemiología , Neumonía Viral/prevención & control , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Infecciones Asintomáticas/epidemiología , Betacoronavirus/enzimología , Betacoronavirus/genética , Betacoronavirus/aislamiento & purificación , COVID-19 , Niño , Preescolar , Proteínas de la Envoltura de Coronavirus , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , ARN Polimerasa Dependiente de ARN de Coronavirus , Brotes de Enfermedades/estadística & datos numéricos , Femenino , Humanos , Lactante , Recién Nacido , Italia/epidemiología , Masculino , Persona de Mediana Edad , Neumonía Viral/transmisión , Neumonía Viral/virología , Prevalencia , ARN Polimerasa Dependiente del ARN/genética , SARS-CoV-2 , Proteínas del Envoltorio Viral/genética , Carga Viral , Proteínas no Estructurales Virales/genética , Adulto Joven
2.
Euro Surveill ; 28(33)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37589592

RESUMEN

BackgroundUsutu virus (USUV) is a flavivirus with an enzootic cycle between birds and mosquitoes; humans are incidental dead-end hosts. In Europe, the virus was first detected in Italy in 1996; since then, it has spread to many European countries.AimWe aimed to report on the epidemiology, surveillance, diagnosis and prevention of USUV infection in humans, mosquitoes and other animals in the European Union/European Economic Area (EU/EEA) from 2012 to 2021.MethodsWe collected information through a literature review, an online survey and an expert meeting.ResultsEight countries reported USUV infection in humans (105 cases, including 12 [corrected] with neurological symptoms), 15 countries in birds and seven in mosquitoes. Infected animals were also found among pets, wild and zoo animals. Usutu virus was detected primarily in Culex pipiens but also in six other mosquito species. Detection of USUV infection in humans is notifiable only in Italy, where it is under surveillance since 2017 and now integrated with surveillance in animals in a One Health approach. Several countries include USUV infection in the differential diagnosis of viral encephalitis and arbovirus infections. Animal USUV infection is not notifiable in any EU/EEA country.ConclusionHuman USUV infections, mainly asymptomatic and, less frequently, with a febrile illness or a neuroinvasive disease, have been reported in several EU/EEA countries, where the virus is endemic. Climate and environmental changes are expected to affect the epidemiology of USUV. A One Health approach could improve the monitoring of its evolution in Europe.


Asunto(s)
Culicidae , Infecciones por Flavivirus , Flavivirus , Animales , Humanos , Diagnóstico Diferencial , Encefalitis Viral , Europa (Continente)/epidemiología , Infecciones por Flavivirus/diagnóstico , Infecciones por Flavivirus/epidemiología , Vigilancia en Salud Pública
4.
Int J Mol Sci ; 22(5)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652988

RESUMEN

In this Review, we briefly describe the basic virology and pathogenesis of SARS-CoV-2, highlighting how stem cell technology and organoids can contribute to the understanding of SARS-CoV-2 cell tropisms and the mechanism of disease in the human host, supporting and clarifying findings from clinical studies in infected individuals. We summarize here the results of studies, which used these technologies to investigate SARS-CoV-2 pathogenesis in different organs. Studies with in vitro models of lung epithelia showed that alveolar epithelial type II cells, but not differentiated lung alveolar epithelial type I cells, are key targets of SARS-CoV-2, which triggers cell apoptosis and inflammation, while impairing surfactant production. Experiments with human small intestinal organoids and colonic organoids showed that the gastrointestinal tract is another relevant target for SARS-CoV-2. The virus can infect and replicate in enterocytes and cholangiocytes, inducing cell damage and inflammation. Direct viral damage was also demonstrated in in vitro models of human cardiomyocytes and choroid plexus epithelial cells. At variance, endothelial cells and neurons are poorly susceptible to viral infection, thus supporting the hypothesis that neurological symptoms and vascular damage result from the indirect effects of systemic inflammatory and immunological hyper-responses to SARS-CoV-2 infection.


Asunto(s)
COVID-19/patología , Organoides/virología , SARS-CoV-2/fisiología , Células Madre/virología , Animales , Apoptosis , COVID-19/virología , Sistema Cardiovascular/citología , Sistema Cardiovascular/patología , Sistema Cardiovascular/virología , Sistema Nervioso Central/citología , Sistema Nervioso Central/patología , Sistema Nervioso Central/virología , Tracto Gastrointestinal/citología , Tracto Gastrointestinal/patología , Tracto Gastrointestinal/virología , Humanos , Inflamación/patología , Inflamación/virología , Pulmón/citología , Pulmón/patología , Pulmón/virología , Organoides/patología , Células Madre/patología , Tropismo Viral , Internalización del Virus
5.
Int J Mol Sci ; 20(21)2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31671583

RESUMEN

Generation of human induced pluripotent stem cells (hiPSCs) and their differentiation into a variety of cells and organoids have allowed setting up versatile, non-invasive, ethically sustainable, and patient-specific models for the investigation of the mechanisms of human diseases, including viral infections and host-pathogen interactions. In this study, we investigated and compared the infectivity and replication kinetics in hiPSCs, hiPSC-derived neural stem cells (NSCs) and undifferentiated neurons, and the effect of viral infection on host innate antiviral responses of representative flaviviruses associated with diverse neurological diseases, i.e., Zika virus (ZIKV), West Nile virus (WNV), and dengue virus (DENV). In addition, we exploited hiPSCs to model ZIKV infection in the embryo and during neurogenesis. The results of this study confirmed the tropism of ZIKV for NSCs, but showed that WNV replicated in these cells with much higher efficiency than ZIKV and DENV, inducing massive cell death. Although with lower efficiency, all flaviviruses could also infect pluripotent stem cells and neurons, inducing similar patterns of antiviral innate immune response gene expression. While showing the usefulness of hiPSC-based infection models, these findings suggest that additional virus-specific mechanisms, beyond neural tropism, are responsible for the peculiarities of disease phenotype in humans.


Asunto(s)
Infecciones por Flavivirus/virología , Flavivirus/patogenicidad , Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología , Neuronas/virología , Muerte Celular , Diferenciación Celular , Células Cultivadas , Virus del Dengue/patogenicidad , Virus del Dengue/fisiología , Flavivirus/fisiología , Infecciones por Flavivirus/inmunología , Humanos , Células Madre Pluripotentes Inducidas/virología , Modelos Biológicos , Células-Madre Neurales/virología , Neurogénesis , Neuronas/citología , Tropismo Viral , Replicación Viral , Virus del Nilo Occidental/patogenicidad , Virus del Nilo Occidental/fisiología , Virus Zika/patogenicidad , Virus Zika/fisiología
6.
J Cell Physiol ; 233(4): 2693-2694, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28816347

RESUMEN

Celiac disease is a multifactorial autoimmune chronic inflammatory disorder affecting approximately one percent of the worldwide population. In such patients, ingestion of gluten proteins from cereals like wheat, barley, and rye causes damage of the small intestine mucosa, with potentially severe consequences. Onset of the disease in predisposed individuals is believed to require a still not clearly identified external trigger, such as viral infections. A very recent study has begun to shed light on a possible mechanistic basis for this hypothesis, and surprisingly linked intestinal infections caused by common reoviruses to the onset of celiac disease.


Asunto(s)
Enfermedad Celíaca/virología , Virosis/complicaciones , Animales , Enfermedad Celíaca/inmunología , Modelos Animales de Enfermedad , Humanos , Tolerancia Inmunológica , Ratones Noqueados , Reoviridae/fisiología
7.
Int J Mol Sci ; 18(1)2017 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-28117672

RESUMEN

Induced pluripotent stem cells (iPSCs) are pluripotent cells derived from adult somatic cells. After the pioneering work by Yamanaka, who first generated iPSCs by retroviral transduction of four reprogramming factors, several alternative methods to obtain iPSCs have been developed in order to increase the yield and safety of the process. However, the question remains open on whether the different reprogramming methods can influence the pluripotency features of the derived lines. In this study, three different strategies, based on retroviral vectors, episomal vectors, and Sendai virus vectors, were applied to derive iPSCs from human fibroblasts. The reprogramming efficiency of the methods based on episomal and Sendai virus vectors was higher than that of the retroviral vector-based approach. All human iPSC clones derived with the different methods showed the typical features of pluripotent stem cells, including the expression of alkaline phosphatase and stemness maker genes, and could give rise to the three germ layer derivatives upon embryoid bodies assay. Microarray analysis confirmed the presence of typical stem cell gene expression profiles in all iPSC clones and did not identify any significant difference among reprogramming methods. In conclusion, the use of different reprogramming methods is equivalent and does not affect gene expression profile of the derived human iPSCs.


Asunto(s)
Técnicas de Reprogramación Celular/métodos , Reprogramación Celular/genética , Células Madre Pluripotentes Inducidas/metabolismo , Transcriptoma , Animales , Diferenciación Celular/genética , Línea Celular , Células Cultivadas , Fibroblastos/citología , Fibroblastos/metabolismo , Vectores Genéticos/genética , Humanos , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Plásmidos/genética , Células Madre Pluripotentes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Virus Sendai/genética
8.
Euro Surveill ; 21(32)2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27542178

RESUMEN

We describe the dynamics of Zika virus (ZIKV) infection in a man in his early 40s who developed fever and rash after returning from Haiti to Italy, in January 2016. Follow-up laboratory testing demonstrated detectable ZIKV RNA in plasma up to day 9 after symptom onset and in urine and saliva up to days 15 and 47, respectively. Notably, persistent shedding of ZIKV RNA was demonstrated in semen, still detectable at 181 days after onset.


Asunto(s)
Fiebre/virología , ARN Viral/sangre , Saliva/virología , Semen/química , Esparcimiento de Virus , Infección por el Virus Zika/diagnóstico , Virus Zika/aislamiento & purificación , Adulto , Anticuerpos Antivirales/sangre , Exantema/virología , Haití , Humanos , Inmunoglobulina M/sangre , Italia , ARN Viral/genética , ARN Viral/orina , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semen/virología , Análisis de Semen , Análisis de Secuencia de ARN , Viaje , Orina/virología , Carga Viral , Virus Zika/genética , Infección por el Virus Zika/sangre , Infección por el Virus Zika/virología
9.
Liver Int ; 35(4): 1324-33, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25417901

RESUMEN

BACKGROUND & AIMS: MicroRNAs (miRNAs) have been involved in hepatocarcinogenesis, but little is known on their role in the progression of chronic viral hepatitis. Aim of this study was to identify miRNA signatures associated with stages of disease progression in patients with chronic viral hepatitis. METHODS: MiRNA expression profile was investigated in liver biopsies from patients with chronic viral hepatitis and correlated with clinical, virological and histopathological features. Relevant miRNAs were further investigated. RESULTS: Most of the significant changes in miRNA expression were associated with liver fibrosis stages and included the significant up-regulation of a group of miRNAs that were demonstrated to target the master regulators of epithelial-mesenchymal transition ZEB1 and ZEB2 and involved in the preservation of epithelial cell differentiation, but also in cell proliferation and fibrogenesis. In agreement with miRNA data, immunostaining of liver biopsies showed that expression of the epithelial marker E-cadherin was maintained in severe fibrosis/cirrhosis while expression of ZEBs and other markers of epithelial-mesenchymal transition were low or absent. Severe liver fibrosis was also significantly associated with the down-regulation of miRNAs with antiproliferative and tumour suppressor activity. Similar changes in miRNA and target gene expression were demonstrated along with disease progression in a mouse model of carbon tetrachloride (CCl4)-induced liver fibrosis, suggesting that they might represent a general response to liver injury. CONCLUSION: Chronic viral hepatitis progression is associated with the activation of miRNA pathways that promote cell proliferation and fibrogenesis, but preserve the differentiated hepatocyte phenotype.


Asunto(s)
Hepatitis B Crónica/genética , Hepatitis C Crónica/genética , Hígado/metabolismo , MicroARNs/genética , Animales , Antígenos CD , Cadherinas/genética , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/patología , Progresión de la Enfermedad , Perfilación de la Expresión Génica/métodos , Marcadores Genéticos , Hepatitis B Crónica/diagnóstico , Hepatitis B Crónica/metabolismo , Hepatitis C Crónica/diagnóstico , Hepatitis C Crónica/metabolismo , Proteínas de Homeodominio/genética , Humanos , Hígado/patología , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/virología , Cirrosis Hepática Experimental/genética , Cirrosis Hepática Experimental/metabolismo , Cirrosis Hepática Experimental/patología , Masculino , Ratones , MicroARNs/metabolismo , Proteínas Represoras/genética , Índice de Severidad de la Enfermedad , Factores de Transcripción/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc , Homeobox 1 de Unión a la E-Box con Dedos de Zinc
10.
Antiviral Res ; 223: 105816, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38286212

RESUMEN

Human cytomegalovirus (HCMV) is the viral leading cause of congenital defects in newborns worldwide. Many aspects of congenital CMV (cCMV) infection, which currently lacks a specific treatment, as well as the main determinants of neuropathogenesis in the developing brain during HCMV infection are unclear. In this study, we modeled HCMV infection at different stages of neural development. Moreover, we evaluated the effects of both approved and investigational anti-HCMV drugs on viral replication and gene expression in two different neural progenitor cell lines, i.e., human embryonic stem cells-derived neural stem cells (NSCs) and fetus-derived neuroepithelial stem (NES) cells. Ganciclovir, letermovir, nitazoxanide, and the ozonide OZ418 reduced viral DNA synthesis and the production of infectious virus in both lines of neural progenitors. HCMV infection dysregulated the expression of genes that either are markers of neural progenitors, such as SOX2, NESTIN, PAX-6, or play a role in neurogenesis, such as Doublecortin. Treatment with antiviral drugs had different effects on HCMV-induced dysregulation of the genes under investigation. This study contributes to the understanding of the molecular mechanisms of cCMV neuropathogenesis and paves the way for further consideration of anti-HCMV drugs as candidate therapeutic agents for the amelioration of cCMV-associated neurological manifestations.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Recién Nacido , Humanos , Infecciones por Citomegalovirus/tratamiento farmacológico , Encéfalo , Drogas en Investigación , Células Madre , Antivirales/farmacología
11.
Sci Rep ; 13(1): 10289, 2023 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-37357221

RESUMEN

Multiple complex intracellular cascades contributing to Hunter syndrome (mucopolysaccharidosis type II) pathogenesis have been recognized and documented in the past years. However, the hierarchy of early cellular abnormalities leading to irreversible neuronal damage is far from being completely understood. To tackle this issue, we have generated two novel iduronate-2-sulfatase (IDS) loss of function human neuronal cell lines by means of genome editing. We show that both neuronal cell lines exhibit no enzymatic activity and increased GAG storage despite a completely different genotype. At a cellular level, they display reduced differentiation, significantly decreased LAMP1 and RAB7 protein levels, impaired lysosomal acidification and increased lipid storage. Moreover, one of the two clones is characterized by a marked decrease of the autophagic marker p62, while none of the two mutants exhibit marked oxidative stress and mitochondrial morphological changes. Based on our preliminary findings, we hypothesize that neuronal differentiation might be significantly affected by IDS functional impairment.


Asunto(s)
Iduronato Sulfatasa , Mucopolisacaridosis II , Humanos , Ácido Idurónico , Sistemas CRISPR-Cas , Iduronato Sulfatasa/genética , Iduronato Sulfatasa/metabolismo , Mucopolisacaridosis II/genética , Línea Celular
12.
Toxicol Rep ; 10: 40-44, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36578672

RESUMEN

Perfluoroalkyl substances (PFASs) are persistent pollutants, raising concerns for human health. Legacy PFAS perfluoro-octanoic acid (PFOA) accumulate in brains of people at high environmental exposure, especially in areas enriched with dopaminergic neurons (DN). In vitro exposure to 10 ng/mL PFOA for 24 h was also associated with an altered molecular and functional phenotype of DN differentiated from human induced pluripotent stem cells (hiPSCs). Acetic acid, 2,2-difluoro-2-((2,2,4,5-tetrafluoro-5(trifluoromethoxy)- 1,3-dioxolan-4-yl)oxy)-ammonium salt (1:1), known as C6O4, is a new generation PFAS proposed to have a safer profile. Here we investigated the effect of C6O4 exposure on the molecular phenotype of hiPSC-derived DN. Cells were exposed to C6O4 for 24 h, at the concentration of 10 ng/mL, at neuronal commitment (DP1), neuronal precursor (DP2) and the mature dopaminergic (DP3) phases of differentiation. Liquid-chromatography/mass-spectrometry showed negligible cell accumulation of C6O4 at each differentiation stage and by staining with Merocyanine-540 we observed unaltered cell membrane fluidity. Immunofluorescence showed that the expression of tyrosine hydroxylase (TH) and ßIII-Tubulin was unaffected by the exposure to C6O4 at each differentiation phase (respectively: DP1, p = 0.332; DP2, p = 0.623; DP3, p = 0.816, with respect to control unexposed conditions). Exposure to C6O4 is presumed to have minor effects on cell molecular/functional phenotype of developing human DN cells, requiring confirm on in vivo models.

13.
Cells ; 12(8)2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37190052

RESUMEN

Stress-induced mitophagy, a tightly regulated process that targets dysfunctional mitochondria for autophagy-dependent degradation, mainly relies on two proteins, PINK1 and Parkin, which genes are mutated in some forms of familiar Parkinson's Disease (PD). Upon mitochondrial damage, the protein kinase PINK1 accumulates on the organelle surface where it controls the recruitment of the E3-ubiquitin ligase Parkin. On mitochondria, Parkin ubiquitinates a subset of mitochondrial-resident proteins located on the outer mitochondrial membrane, leading to the recruitment of downstream cytosolic autophagic adaptors and subsequent autophagosome formation. Importantly, PINK1/Parkin-independent mitophagy pathways also exist that can be counteracted by specific deubiquitinating enzymes (DUBs). Down-regulation of these specific DUBs can presumably enhance basal mitophagy and be beneficial in models in which the accumulation of defective mitochondria is implicated. Among these DUBs, USP8 is an interesting target because of its role in the endosomal pathway and autophagy and its beneficial effects, when inhibited, in models of neurodegeneration. Based on this, we evaluated autophagy and mitophagy levels when USP8 activity is altered. We used genetic approaches in D. melanogaster to measure autophagy and mitophagy in vivo and complementary in vitro approaches to investigate the molecular pathway that regulates mitophagy via USP8. We found an inverse correlation between basal mitophagy and USP8 levels, in that down-regulation of USP8 correlates with increased Parkin-independent mitophagy. These results suggest the existence of a yet uncharacterized mitophagic pathway that is inhibited by USP8.


Asunto(s)
Proteínas de Drosophila , Mitofagia , Animales , Humanos , Mitofagia/genética , Regulación hacia Abajo , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Quinasas/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Endopeptidasas/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Drosophila/metabolismo
14.
mBio ; 14(1): e0309722, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36622141

RESUMEN

Every year, dengue virus (DENV) causes one hundred million infections worldwide that can result in dengue disease and severe dengue. Two other mosquito-borne flaviviruses, i.e., Zika virus (ZIKV) and West Nile virus (WNV), are responsible of prolonged outbreaks and are associated with severe neurological diseases, congenital defects, and eventually death. These three viruses, despite their importance for global public health, still lack specific drug treatments. Here, we describe the structure-guided discovery of small molecules with pan-flavivirus antiviral potential by a virtual screening of ~1 million structures targeting the NS3-NS5 interaction surface of different flaviviruses. Two molecules inhibited the interaction between DENV NS3 and NS5 in vitro and the replication of all DENV serotypes as well as ZIKV and WNV and exhibited low propensity to select resistant viruses. Remarkably, one molecule demonstrated efficacy in a mouse model of dengue by reducing peak viremia, viral load in target organs, and associated tissue pathology. This study provides the proof of concept that targeting the flaviviral NS3-NS5 interaction is an effective therapeutic strategy able to reduce virus replication in vivo and discloses new chemical scaffolds that could be further developed, thus providing a significant milestone in the development of much awaited broad-spectrum antiflaviviral drugs. IMPORTANCE More than one-third of the human population is at risk of infection by different mosquito-borne flaviviruses. Despite this, no specific antiviral drug is currently available. In this work, using a computational approach based on molecular dynamics simulation and virtual screening of ~1 million small-molecule structures, we identified a compound that targets the interaction between the two sole flaviviral enzymes, i.e., NS3 and NS5. This compound demonstrated pan-serotype anti-DENV activity and pan-flavivirus potential in infected cells, low propensity to select viral resistant mutant viruses, and efficacy in a mouse model of dengue. Broad-spectrum antivirals are much awaited, and this work represents a significant advance toward the development of therapeutic molecules with extended antiflavivirus potential that act by an innovative mechanism and could be used alone or in combination with other antivirals.


Asunto(s)
Dengue , Flavivirus , Virus del Nilo Occidental , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Ratones , Antivirales/farmacología , Antivirales/uso terapéutico , Antivirales/química , Dengue/tratamiento farmacológico , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/química
15.
J Exp Med ; 220(9)2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37347462

RESUMEN

Mosquito-borne West Nile virus (WNV) infection is benign in most individuals but can cause encephalitis in <1% of infected individuals. We show that ∼35% of patients hospitalized for WNV disease (WNVD) in six independent cohorts from the EU and USA carry auto-Abs neutralizing IFN-α and/or -ω. The prevalence of these antibodies is highest in patients with encephalitis (∼40%), and that in individuals with silent WNV infection is as low as that in the general population. The odds ratios for WNVD in individuals with these auto-Abs relative to those without them in the general population range from 19.0 (95% CI 15.0-24.0, P value <10-15) for auto-Abs neutralizing only 100 pg/ml IFN-α and/or IFN-ω to 127.4 (CI 87.1-186.4, P value <10-15) for auto-Abs neutralizing both IFN-α and IFN-ω at a concentration of 10 ng/ml. These antibodies block the protective effect of IFN-α in Vero cells infected with WNV in vitro. Auto-Abs neutralizing IFN-α and/or IFN-ω underlie ∼40% of cases of WNV encephalitis.


Asunto(s)
Interferón Tipo I , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Chlorocebus aethiops , Humanos , Células Vero , Autoanticuerpos , Anticuerpos Antivirales , Interferón-alfa
16.
Cells ; 10(11)2021 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-34831478

RESUMEN

One of the main pathological features of Parkinson's disease (PD) is a diffuse accumulation of alpha-synuclein (aS) aggregates in neurons. The NEDD4 E3 Ub ligase promotes aS degradation by the endosomal-lysosomal route. Interestingly, NEDD4, as well as being a small molecule able to trigger its functions, is protective against human aS toxicity in evolutionary distant models. While pharmacological activation of E3 enzymes is not easy to achieve, their flexibility and the lack of "consensus" motifs for Ub-conjugation allow the development of engineered Ub-ligases, able to target proteins of interest. We developed lentiviral vectors, encoding well-characterized anti-human aS scFvs fused in frame to the NEDD4 catalytic domain (ubiquibodies), in order to target ubiquitinate aS. We demonstrate that, while all generated ubiquibodies bind to and ubiquitinate aS, the one directed against the non-amyloid component (NAC) of aS (Nac32HECT) affects aS's intracellular levels. Furthermore, Nac32HECT expression partially rescues aS's overexpression or mutation toxicity in neural stem cells. Overall, our data suggest that ubiquibodies, and Nac32HECT in particular, represent a valid platform for interfering with the effects of aS's accumulation and aggregation in neurons.


Asunto(s)
Vectores Genéticos/metabolismo , Lentivirus/genética , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Proteínas Recombinantes/metabolismo , alfa-Sinucleína/metabolismo , Animales , Línea Celular Tumoral , Neuronas Dopaminérgicas/metabolismo , Células HEK293 , Humanos , Espacio Intracelular/metabolismo , Ratones , Células-Madre Neurales/metabolismo , Enfermedad de Parkinson/patología , Ubiquitinación
17.
J Bacteriol ; 192(19): 5270-1, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20675487

RESUMEN

Neisseria meningitidis is a human-specific pathogen known for its capability to cause sepsis and meningitis. Here we report the availability of 2 draft genome sequences obtained from patients infected during the same epidemic outbreak. Both bacterial isolates belong to serogroup C, but their genome sequences show local and remarkable differences compared with each other or with the reference genome of strain FAM18.


Asunto(s)
Genoma Bacteriano/genética , Neisseria meningitidis Serogrupo C/genética , Humanos , Datos de Secuencia Molecular , Neisseria meningitidis Serogrupo C/aislamiento & purificación
18.
J Infect Dis ; 200(11): 1755-8, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19860559

RESUMEN

The polyomaviruses KI (KIPyV) and WU (WUPyV) were recently identified mainly in respiratory samples from children and immunosuppressed patients. Investigation of 54 autopsy brain tissue samples from 22 subjects demonstrated that WUPyV DNA and KIPyV DNA could be detected in 1 of 4 human immunodeficiency virus (HIV)-positive individuals with progressive multifocal leukoencephalopathy (PML) and in 3 of 10 HIV-positive individuals without PML, but not in 8 HIV-negative individuals. Viruses were localized in all regions of the central nervous system that were analyzed, that is, the cerebral hemispheres, cerebellum, pons, and medulla oblongata. No specific histopathological findings were found to be associated with the presence of WUPyV and KIPyV.


Asunto(s)
Encéfalo/virología , Infecciones por VIH/virología , Leucoencefalopatía Multifocal Progresiva/virología , Poliomavirus/aislamiento & purificación , Adulto , Anciano , Química Encefálica , ADN Viral/análisis , Femenino , VIH/genética , Humanos , Masculino , Persona de Mediana Edad , Poliomavirus/genética , Provirus/genética , Estudios Retrospectivos
19.
Artículo en Inglés | MEDLINE | ID: mdl-32258527

RESUMEN

Liver has a central role in protein and lipid metabolism, and diseases involving hepatocytes have often repercussions on multiple organs and systems. Hepatic disorders are frequently characterized by production of defective or non-functional proteins, and traditional gene therapy approaches have been attempted for years to restore adequate protein levels through delivery of transgenes. Recently, many different genome editing platforms have been developed aimed at correcting at DNA level the defects underlying the diseases. In this Review we discuss the latest applications of these tools applied to develop therapeutic strategies for rare liver disorders, in particular updating the literature with the most recent strategies relying on base editors technology.

20.
Viruses ; 12(8)2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32806715

RESUMEN

West Nile virus (WNV) and Usutu virus (USUV) are genetically related neurotropic mosquito-borne flaviviruses, which frequently co-circulate in nature. Despite USUV seeming to be less pathogenic for humans than WNV, the clinical manifestations induced by these two viruses often overlap and may evolve to produce severe neurological complications. The aim of this study was to investigate the effects of WNV and USUV infection on human induced pluripotent stem cell-derived neural stem cells (hNSCs), as a model of the neural progenitor cells in the developing fetal brain and in adult brain. Zika virus (ZIKV), a flavivirus with known tropism for NSCs, was used as the positive control. Infection of hNSCs and viral production, effects on cell viability, apoptosis, and innate antiviral responses were compared among viruses. WNV displayed the highest replication efficiency and cytopathic effects in hNSCs, followed by USUV and then ZIKV. In these cells, both WNV and USUV induced the overexpression of innate antiviral response genes at significantly higher levels than ZIKV. Expression of interferon type I, interleukin-1ß and caspase-3 was significantly more elevated in WNV- than USUV-infected hNSCs, in agreement with the higher neuropathogenicity of WNV and the ability to inhibit the interferon response pathway.


Asunto(s)
Flavivirus/patogenicidad , Inmunidad Innata , Células-Madre Neurales/virología , Replicación Viral , Virus del Nilo Occidental/patogenicidad , Apoptosis , Supervivencia Celular , Células Cultivadas , Flavivirus/fisiología , Humanos , Células Madre Pluripotentes Inducidas , Cinética , Células-Madre Neurales/inmunología , Virulencia , Virus del Nilo Occidental/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA