Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Inorg Chem ; 62(12): 5016-5022, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36926858

RESUMEN

We present a new method to synthesize bulk indium nitride by means of a simple solid-state chemical reaction carried out under hydrostatic high-pressure/high-temperature conditions in a multi-anvil apparatus, not involving gases or solvents during the process. The reaction occurs between the binary oxide In2O3 and the highly reactive Li3N as the nitrogen source, in the powder form. The formation of the hexagonal phase of InN, occurring at 350 °C and P ≥ 3 GPa, was successfully confirmed by powder X-ray diffraction, with the presence of Li2O as a unique byproduct. A simple washing process in weak acidic solution followed by centrifugation allowed us to obtain pure InN polycrystalline powders as a precipitate. With an analogous procedure, it was possible to obtain pure bulk GaN, from Ga2O3 and Li3N at T ≥ 600 °C and P ≥ 2.5 GPa. These results point out, particularly for InN, a clean, and innovative way to produce significant quantities of one of the most promising nitrides in the field of electronics and energy technologies.

2.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36555173

RESUMEN

Copper-doped antimony selenide (Cu-doped Sb2Se3) thin films were deposited as absorber layers in photovoltaic solar cells using the low-temperature pulsed electron deposition (LT-PED) technique, starting from Sb2Se3 targets where part of the Sb was replaced with Cu. From a crystalline point of view, the best results were achieved for thin films with about Sb1.75Cu0.25Se3 composition. In order to compare the results with those previously obtained on undoped thin films, Cu-doped Sb2Se3 films were deposited both on Mo- and Fluorine-doped Tin Oxide (FTO) substrates, which have different influences on the film crystallization and grain orientation. From the current-voltage analysis it was determined that the introduction of Cu in the Sb2Se3 absorber enhanced the open circuit voltage (VOC) up to remarkable values higher than 500 mV, while the free carrier density became two orders of magnitude higher than in pure Sb2Se3-based solar cells.

3.
Nanotechnology ; 31(39): 394001, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32521532

RESUMEN

We report a detailed characterization of Ge NWs directly grown on glass by a MOVPE system, showing how different growth parameters can affect the final outcome and comparing NWs grown on a monocrystalline Ge(111) substrate with NWs grown on amorphous glass. Our experimental results indicate that the choice of the substrate does not affect any of the relevant morphological, crystallographic or electrical properties of Ge NWs. Lengths are in the 20-30 micrometer range with minimal tapering, while growth rates are very similar to to NWs grown on Ge(111); TEM and Raman characterization show a very good crystallinity of measured nanostructures. We have also analyzed the growth process on glass and we were able to reach a conclusion on the specific growth mechanism for Ge NWs on amorphous substrates. Our findings demonstrate that glass is a valid option as cheap substrate for the mass production of these nanostructures.

4.
Nanotechnology ; 30(30): 305701, 2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-30974421

RESUMEN

Metamorphic InAs/In0.15Ga0.85As and InAs/In0.31Ga0.69As quantum dot (QD) arrays are known to be photosensitive in the telecommunication ranges at 1.3 and 1.55 µm, respectively; however, for photonic applications of these nanostructures, the effect of levels related to defects still needs in-depth investigation. We have focused on the influence of electron traps of defects on photocurrent (PC) in the plane of the QD array, studying by PC and deep level thermally stimulated current spectroscopy together with HRTEM and theoretical modeling. In the structures, a rich spectrum of electron trap levels of point defects EL6 (E c - 0.37 eV), EL7 (0.29-0.30 eV), EL8 (0.27 eV), EL9/M2 (0.22-0.23 eV), EL10/M1 (0.16 eV), M0 (∼0.11 eV) and three extended defects ED1/EL3 (0.52-0.54), ED2/EL4 (0.47-0.48 eV), ED3/EL5 (0.42-0.43 eV) has been identified. Among them, new defect levels undiscovered earlier in InAs/InGaAs nanostructures has been detected, in particular, EL8 and M0. The found electron traps are shown to affect a time-dependent PC at low temperatures. Besides a long-term kinetics due to trap charging, a prolonged PC decrement versus time is measured under constant illumination. The decrement is interpreted to be related to a Coulomb screening of the conductivity channel by the electrons captured in the QD interface traps. The decrement is well fitted by allometric exponents, which means many types of traps involved in electron capturing. This study provides new findings into the mechanism of in-plane PC of QD arrays, showing a crucial importance of growth-related defects on photoresponsivity at low temperatures.

5.
Nano Lett ; 14(2): 456-63, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24422533

RESUMEN

In this work, we propose the use of the Hanbury-Brown and Twiss interferometric technique and a switchable two-color excitation method for evaluating the exciton and noncorrelated electron-hole dynamics associated with single photon emission from indium arsenide (InAs) self-assembled quantum dots (QDs). Using a microstate master equation model we demonstrate that our single QDs are described by nonlinear exciton dynamics. The simultaneous detection of two-color, single photon emission from InAs QDs using these nonlinear dynamics was used to design a NOT AND logic transference function. This computational functionality combines the advantages of working with light/photons as input/output device parameters (all-optical system) and that of a nanodevice (QD size of ∼ 20 nm) while also providing high optical sensitivity (ultralow optical power operational requirements). These system features represent an important and interesting step toward the development of new prototypes for the incoming quantum information technologies.

6.
ACS Appl Mater Interfaces ; 16(12): 14704-14711, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38494603

RESUMEN

Interfacial regions play a key role in determining the overall power conversion efficiency of thin film solar cells. However, the nanoscale investigation of thin film interfaces using conventional analytical tools is challenging due to a lack of required sensitivity and spatial resolution. Here, we surmount these obstacles using tip-enhanced Raman spectroscopy (TERS) and apply it to investigate the absorber (Sb2Se3) and buffer (CdS) layers interface in a Sb2Se3-based thin film solar cell. Hyperspectral TERS imaging with 10 nm spatial resolution reveals that the investigated interface between the absorber and buffer layers is far from uniform, as TERS analysis detects an intermixing of chemical compounds instead of a sharp demarcation between the CdS and Sb2Se3 layers. Intriguingly, this interface, comprising both Sb2Se3 and CdS compounds, exhibits an unexpectedly large thickness of 295 ± 70 nm attributable to the roughness of the Sb2Se3 layer. Furthermore, TERS measurements provide compelling evidence of CdS penetration into the Sb2Se3 layer, likely resulting from unwanted reactions on the absorber surface during chemical bath deposition. Notably, the coexistence of ZnO, which serves as the uppermost conducting layer, and CdS within the Sb2Se3-rich region has been experimentally confirmed for the first time. This study underscores TERS as a promising nanoscale technique to investigate thin film inorganic solar cell interfaces, offering novel insights into intricate interface structures and compound intermixing.

7.
Discov Nano ; 18(1): 5, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36749462

RESUMEN

We study the electrical and morphological properties of random arrays of Ge nanowires (NW) deposited on sapphire substrates. NW-based devices were fabricated with the aim of developing chemiresistive-type sensors for the detection of explosive vapours. We present the results obtained on pristine and annealed NWs and, focusing on the different phenomenology observed, we discuss the critical role played by NW-NW junctions on the electrical conduction and sensing performances. A mechanism is proposed to explain the high efficiency of the annealed arrays of NWs in detecting 2,4,6 trinitrotoluene vapours. This study shows the promising potential of Ge NW-based sensors in the field of civil security.

8.
Sci Rep ; 13(1): 17963, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864099

RESUMEN

The need for direct X-ray detection under high photon flux with moderate or high energies (30-100 keV range) has strongly increased with the rise of the 4th Generation Synchrotron Light Sources, characterised by extremely brilliant beamlines, and of other applications such as spectral computed tomography in medicine and non-destructive tests for industry. The novel Cadmium Zinc Telluride (CZT) developed by Redlen Technologies can be considered the reference material for high-flux applications (HF-CZT). The enhanced charge transport properties of the holes allow the mitigation of the effects of radiation induced polarization phenomena, typically observed in standard CZT materials (LF-CZT) under high photon flux. However, standard LF-CZT electrical contacts led to inacceptable high dark leakage currents on HF-CZT devices. In this work, a detailed study on the characteristics of new optimized sputtered platinum electrical contacts on HF-CZT detectors is reported. The results from electrical and spectroscopic investigations, showed the best performances on HF-CZT detectors with platinum anode, coupled with both platinum or gold cathode. The morphology, structure, and composition of Pt/CZT contact have been analysed by means of Transmission Electron Microscopy (TEM) on microscopic lamellas obtained by Focused Ion Beam (FIB), highlighting the presence of CdTeO3 oxide at the metal semiconductor interface.

9.
Tissue Eng Part C Methods ; 28(4): 148-157, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35357965

RESUMEN

Collagens, elastin, fibrillin, decorin, and laminin are key constituents of the extracellular matrix and basement membrane of mammalian organs. Thus, changes in their quantities may influence the mechanochemical regulation of resident cells. Since maintenance of a native stromal composition is a requirement for three-dimensional (3D) matrix-based recellularization techniques in tissue engineering, we studied the influence of the decellularization detergents on these proteins in porcine kidney, liver, pancreas, and skin. Using a quick thawing/quick microwave-assisted decellularization protocol and two different detergents, sodium dodecyl sulfate (SDS) vs Triton X-100 (TX100), at identical concentration, variations in matrix conservation of stromal proteins were detected by liquid chromatography-mass spectrometry coupled to light and scanning electron microscopies, in dependence on each detergent. In all organs tested except pancreas, collagens were retained to a statistically significant level using the TX100-based protocol. In contrast fibrillin, elastin (except in kidney), and decorin (only in liver) were better preserved with the SDS-dependent protocol. Irrespective of the detergent used, laminin always remained at an irrelevant level. Our results prompt attention to the type of detergent in organ decellularization, suggesting that its choice may influence morphoregulatory inputs peculiar to the type of 3D bioartificial mammalian organ to be reconstructed. Impact statement Simple change of the protocol's main detergent leads to a very substantial difference in the panel of the stromal proteins detected by qualitative and semiquantitative mass spectrometry in acellular porcine matrices. This remarkable methodological variable promises to yield proteomic reference panels in a number of different species-specific acellular matrices allowing for selective retainment of peculiar mechanochemical inputs, to differently address the development of the seeded cells in relation to the type of organ to be bioartificially reconstructed.


Asunto(s)
Detergentes , Andamios del Tejido , Animales , Colágeno/metabolismo , Decorina/metabolismo , Detergentes/química , Detergentes/metabolismo , Detergentes/farmacología , Elastina/metabolismo , Matriz Extracelular/metabolismo , Fibrilinas/metabolismo , Laminina/metabolismo , Mamíferos , Espectrometría de Masas , Octoxinol/metabolismo , Proteómica , Porcinos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
10.
PLoS One ; 17(8): e0272486, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35917303

RESUMEN

The study of the intimate connection occurring at the interface between cells and titanium implant surfaces is a major challenge for dental materials scientists. Indeed, several imaging techniques have been developed and optimized in the last decades, but an optimal method has not been described yet. The combination of the scanning electron microscopy (SEM) with a focused ion beam (FIB), represents a pioneering and interesting tool to allow the investigation of the relationship occurring at the interface between cells and biomaterials, including titanium. However, major caveats concerning the nature of the biological structures, which are not conductive materials, and the physico-chemical properties of titanium (i.e. color, surface topography), require a fine and accurate preparation of the sample before its imaging. Hence, the aim of the present work is to provide a suitable protocol for cell-titanium sample preparation before imaging by SEM-FIB. The concepts presented in this paper are also transferrable to other fields of biomaterials research.


Asunto(s)
Materiales Biocompatibles , Titanio , Materiales Biocompatibles/química , Adhesión Celular , Microscopía Electrónica de Rastreo , Prótesis e Implantes , Propiedades de Superficie , Titanio/química
11.
Nanomaterials (Basel) ; 12(8)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35457985

RESUMEN

Nitroaromatic explosives are the most common explosives, and their detection is important to public security, human health, and environmental protection. In particular, the detection of solid explosives through directly revealing the presence of their vapors in air would be desirable for compact and portable devices. In this study, amino-functionalized carbon nanotubes were used to produce resistive sensors to detect nitroaromatic explosives by interaction with their vapors. Devices formed by carbon nanotube networks working at room temperature revealed trinitrotoluene, one of the most common nitroaromatic explosives, and di-nitrotoluene-saturated vapors, with reaction and recovery times of a few and tens of seconds, respectively. This type of resistive device is particularly simple and may be easily combined with low-power electronics for preparing portable devices.

12.
J Photochem Photobiol B ; 219: 112189, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33878686

RESUMEN

The increasing demand for aesthetics, together with advancements in technology, have contributed to the rise in popularity of all-ceramic restorations. In the last two decades, the continuous progression in ceramic materials science for dental applications has permitted the fabrication of high-strength materials. Amongst these, zirconia-based ceramics have improved in terms of fracture resistance and long-term viability in comparison with other silica-based materials. Unfortunately, while bonding of resin cement-silica ceramics can be strengthened through creation of a porous surface by applying hydrofluoric acid (5%-9.5%) and a subsequent silane coupling agent, the glass-free polycrystalline microstructure of zirconia ceramics does not allow such a reaction. The aim of the present in vitro study was to observe the effect of 1070 nm fiber nanosecond pulse laser irradiation on zirconia samples through morphological analysis (profilometry, SEM), thermal recording with Fiber Bragg Gratings (FBGs), elemental composition analysis (EDX) and bond strength testing (mechanical tests) in order to evaluate the possible advantages of this kind of treatment on zirconia surfaces, as well as to show the potential side effects and changes in chemical composition. Despite laser irradiation with a 1070 nm wavelength fiber laser and correct process parameters demonstrating suitable outcomes in terms of improved surface roughness and minimal thermal damage, comparison between irradiated and unirradiated samples did not exhibit statistically significant differences in terms of bonding strength.


Asunto(s)
Rayos Láser , Circonio/efectos de la radiación , Microscopía Electrónica de Rastreo , Resistencia al Corte , Propiedades de Superficie/efectos de la radiación , Temperatura , Factores de Tiempo , Circonio/química
13.
Pharmaceutics ; 13(11)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34834240

RESUMEN

Inhalation of Calcium Phosphate nanoparticles (CaPs) has recently unmasked the potential of this nanomedicine for a respiratory lung-to-heart drug delivery targeting the myocardial cells. In this work, we investigated the development of a novel highly respirable dry powder embedding crystalline CaPs. Mannitol was selected as water soluble matrix excipient for constructing respirable dry microparticles by spray drying technique. A Quality by Design approach was applied for understanding the effect of the feed composition and spraying feed rate on typical quality attributes of inhalation powders. The in vitro aerodynamic behaviour of powders was evaluated using a medium resistance device. The inner structure and morphology of generated microparticles were also studied. The 1:4 ratio of CaPs/mannitol led to the generation of hollow microparticles, with the best aerodynamic performance. After microparticle dissolution, the released nanoparticles kept their original size.

14.
Materials (Basel) ; 13(9)2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32370074

RESUMEN

Magnetic shape memory Heuslers have a great potential for their exploitation in next-generation cooling devices and actuating systems, due to their "giant" caloric and thermo/magnetomechanical effects arising from the combination of magnetic order and a martensitic transition. Thermal hysteresis, broad transition range, and twinning stress are among the major obstacles preventing the full exploitation of these materials in applications. Using Ni-Mn-Ga seven-modulated epitaxial thin films as a model system, we investigated the possible links between the phase transition and the details of the twin variants configuration in the martensitic phase. We explored the crystallographic relations between the martensitic variants from the atomic-scale to the micro-scale through high-resolution techniques and combined this information with the direct observation of the evolution of martensitic twin variants vs. temperature. Based on our multiscale investigation, we propose a route for the martensitic phase transition, in which the interfaces between different colonies of twins play the major role of initiators for both the forward and reverse phase transition. Linking the martensitic transition to the martensitic configuration sheds light onto the possible mechanisms influencing the transition and paves the way towards microstructure engineering for the full exploitation of shape memory Heuslers in different applications.

15.
Nanoscale Res Lett ; 13(1): 103, 2018 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-29663094

RESUMEN

Photoelectric properties of the metamorphic InAs/In x Ga1 - xAs quantum dot (QD) nanostructures were studied at room temperature, employing photoconductivity (PC) and photoluminescence spectroscopies, electrical measurements, and theoretical modeling. Four samples with different stoichiometry of In x Ga1 - xAs cladding layer have been grown: indium content x was 0.15, 0.24, 0.28, and 0.31. InAs/In0.15Ga0.85As QD structure was found to be photosensitive in the telecom range at 1.3 µm. As x increases, a redshift was observed for all the samples, the structure with x = 0.31 was found to be sensitive near 1.55 µm, i.e., at the third telecommunication window. Simultaneously, only a slight decrease in the QD PC was recorded for increasing x, thus confirming a good photoresponse comparable with the one of In0.15Ga0.75As structures and of GaAs-based QD nanostructures. Also, the PC reduction correlate with the similar reduction of photoluminescence intensity. By simulating theoretically the quantum energy system and carrier localization in QDs, we gained insight into the PC mechanism and were able to suggest reasons for the photocurrent reduction, by associating them with peculiar behavior of defects in such a type of structures. All this implies that metamorphic QDs with a high x are valid structures for optoelectronic infrared light-sensitive devices.

16.
Dent Mater J ; 37(2): 278-285, 2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29279543

RESUMEN

The aim of the study was to investigate cell adhesion to micro-structured titanium. Osteoblastic MC3T3 cells were cultured on smooth (P) or sand-blasted/acid-etched (SLA) titanium discs and were observed at scanning electron microscope/focused ion beam (SEM/FIB). Myosin II and actin microfilaments were labelled for epifluorescence microscopy. FIB revealed that cell adhesion initiated centrally and expanded to the cell periphery and that cells attached on the substrate by bridging over the titanium irregularities and adhering mostly on surface peaks. Gaps were visible between concave areas and cytoplasm and areas around ridges represented preferred attachment points for cells. A different myosin distribution was observed between samples and myosin inhibition affected cell responses. Taken together our data indicate that cells attach on micro-rough titanium by bridging over its irregularities. This is likely mediated by myosin II, whose distribution is altered in cells on SLA discs.


Asunto(s)
Adhesión Celular/efectos de los fármacos , Osteoblastos/citología , Titanio/farmacología , Grabado Ácido Dental , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Propiedades de Superficie , Factores de Tiempo
17.
J Appl Phys ; 121: 135303, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28522879

RESUMEN

In this paper, strain transfer efficiencies from a single crystalline piezoelectric lead magnesium niobate-lead titanate substrate to a GaAs semiconductor membrane bonded on top are investigated using state-of-the-art x-ray diffraction (XRD) techniques and finite-element-method (FEM) simulations. Two different bonding techniques are studied, namely, gold-thermo-compression and polymer-based SU8 bonding. Our results show a much higher strain-transfer for the "soft" SU8 bonding in comparison to the "hard" bonding via gold-thermo-compression. A comparison between the XRD results and FEM simulations allows us to explain this unexpected result with the presence of complex interface structures between the different layers.

18.
Nanoscale Res Lett ; 12(1): 559, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28983869

RESUMEN

The bipolar effect of GaAs substrate and nearby layers on photovoltage of vertical metamorphic InAs/InGaAs in comparison with pseudomorphic (conventional) InAs/GaAs quantum dot (QD) structures were studied. Both metamorphic and pseudomorphic structures were grown by molecular beam epitaxy, using bottom contacts at either the grown n +-buffers or the GaAs substrate. The features related to QDs, wetting layers, and buffers have been identified in the photoelectric spectra of both the buffer-contacted structures, whereas the spectra of substrate-contacted samples showed the additional onset attributed to EL2 defect centers. The substrate-contacted samples demonstrated bipolar photovoltage; this was suggested to take place as a result of the competition between components related to QDs and their cladding layers with the substrate-related defects and deepest grown layer. No direct substrate effects were found in the spectra of the buffer-contacted structures. However, a notable negative influence of the n +-GaAs buffer layer on the photovoltage and photoconductivity signal was observed in the InAs/InGaAs structure. Analyzing the obtained results and the performed calculations, we have been able to provide insights on the design of metamorphic QD structures, which can be useful for the development of novel efficient photonic devices.

19.
Nanoscale Res Lett ; 12(1): 335, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28482647

RESUMEN

Optical and photoelectric properties of metamorphic InAs/InGaAs and conventional pseudomorphic InAs/GaAs quantum dot (QD) structures were studied. We used two different electrical contact configurations that allowed us to have the current flow (i) only through QDs and embedding layers and (ii) through all the structure, including the GaAs substrate (wafer). Different optical transitions between states of QDs, wetting layers, GaAs or InGaAs buffers, and defect-related centers were studied by means of photovoltage (PV), photoconductivity (PC), photoluminescence (PL), and absorption spectroscopies. It was shown that the use of the InGaAs buffer spectrally shifted the maximum of the QD PL band to 1.3 µm (telecommunication range) without a decrease in the yield. Photosensitivity for the metamorphic QDs was found to be higher than that in GaAs buffer while the photoresponses for both metamorphic and pseudomorphic buffer layers were similar. The mechanisms of PV and PC were discussed for both structures. The dissimilarities in properties of the studied structures are explained in terms of the different design. A critical influence of the defects on the photoelectrical properties of both structures was observed in the spectral range from 0.68 to 1.0 eV for contact configuration (ii), i.e., in the case of electrically active GaAs wafer. No effect of such defects on the photoelectric spectra was found for configuration (i), when the structures were contacted to the top and bottom buffers; only a 0.83 eV feature was observed in the photocurrent spectrum of pseudomorphic structure and interpreted to be related to defects close to InAs/GaAs QDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA