Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 579(7797): 123-129, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32103176

RESUMEN

A mosaic of cross-phylum chemical interactions occurs between all metazoans and their microbiomes. A number of molecular families that are known to be produced by the microbiome have a marked effect on the balance between health and disease1-9. Considering the diversity of the human microbiome (which numbers over 40,000 operational taxonomic units10), the effect of the microbiome on the chemistry of an entire animal remains underexplored. Here we use mass spectrometry informatics and data visualization approaches11-13 to provide an assessment of the effects of the microbiome on the chemistry of an entire mammal by comparing metabolomics data from germ-free and specific-pathogen-free mice. We found that the microbiota affects the chemistry of all organs. This included the amino acid conjugations of host bile acids that were used to produce phenylalanocholic acid, tyrosocholic acid and leucocholic acid, which have not previously been characterized despite extensive research on bile-acid chemistry14. These bile-acid conjugates were also found in humans, and were enriched in patients with inflammatory bowel disease or cystic fibrosis. These compounds agonized the farnesoid X receptor in vitro, and mice gavaged with the compounds showed reduced expression of bile-acid synthesis genes in vivo. Further studies are required to confirm whether these compounds have a physiological role in the host, and whether they contribute to gut diseases that are associated with microbiome dysbiosis.


Asunto(s)
Ácidos y Sales Biliares/biosíntesis , Ácidos y Sales Biliares/química , Metabolómica , Microbiota/fisiología , Animales , Ácidos y Sales Biliares/metabolismo , Ácido Cólico/biosíntesis , Ácido Cólico/química , Ácido Cólico/metabolismo , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Fibrosis Quística/microbiología , Vida Libre de Gérmenes , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/microbiología , Ratones , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo
2.
Nat Methods ; 17(9): 905-908, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32839597

RESUMEN

Molecular networking has become a key method to visualize and annotate the chemical space in non-targeted mass spectrometry data. We present feature-based molecular networking (FBMN) as an analysis method in the Global Natural Products Social Molecular Networking (GNPS) infrastructure that builds on chromatographic feature detection and alignment tools. FBMN enables quantitative analysis and resolution of isomers, including from ion mobility spectrometry.


Asunto(s)
Productos Biológicos/química , Espectrometría de Masas , Biología Computacional/métodos , Bases de Datos Factuales , Metabolómica/métodos , Programas Informáticos
3.
Nat Chem Biol ; 17(2): 146-151, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33199911

RESUMEN

Untargeted mass spectrometry is employed to detect small molecules in complex biospecimens, generating data that are difficult to interpret. We developed Qemistree, a data exploration strategy based on the hierarchical organization of molecular fingerprints predicted from fragmentation spectra. Qemistree allows mass spectrometry data to be represented in the context of sample metadata and chemical ontologies. By expressing molecular relationships as a tree, we can apply ecological tools that are designed to analyze and visualize the relatedness of DNA sequences to metabolomics data. Here we demonstrate the use of tree-guided data exploration tools to compare metabolomics samples across different experimental conditions such as chromatographic shifts. Additionally, we leverage a tree representation to visualize chemical diversity in a heterogeneous collection of samples. The Qemistree software pipeline is freely available to the microbiome and metabolomics communities in the form of a QIIME2 plugin, and a global natural products social molecular networking workflow.


Asunto(s)
Espectrometría de Masas/métodos , Metabolómica , Algoritmos , Análisis por Conglomerados , ADN/química , Dermatoglifia del ADN , Bases de Datos Factuales , Ecología , Análisis de los Alimentos , Microbiota , Análisis Multivariante , Programas Informáticos , Espectrometría de Masas en Tándem , Flujo de Trabajo
4.
Nature ; 551(7681): 457-463, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29088705

RESUMEN

Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.


Asunto(s)
Biodiversidad , Planeta Tierra , Microbiota/genética , Animales , Archaea/genética , Archaea/aislamiento & purificación , Bacterias/genética , Bacterias/aislamiento & purificación , Ecología/métodos , Dosificación de Gen , Mapeo Geográfico , Humanos , Plantas/microbiología , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética
5.
Proc Natl Acad Sci U S A ; 117(49): 31259-31266, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33229553

RESUMEN

Triclosan (TCS), employed as an antiseptic and disinfectant, comes into direct contact with humans through a plethora of consumer products and its rising environmental release. We have demonstrated that TCS promotes liver tumorigenesis in mice, yet the biological and molecular mechanisms by which TCS exerts its toxicity, especially in early stages of liver disease, are largely unexplored. When mice were fed a high-fat diet (HFD), we found that fatty liver and dyslipidemia are prominent early signs of liver abnormality induced by TCS. The presumably protective HFD-induced hepatic expression of the metabolic regulator fibroblast growth factor 21 (FGF21) was blunted by TCS. TCS-altered Fgf21 expression aligned with aberrant expression of genes encoding metabolic enzymes manifested as profound systemic metabolic changes that disturb homeostasis of amino acids, fatty acids, and glucose. Using a type 1 diabetic animal model, TCS potentiates and accelerates the development of steatohepatitis and fibrosis, accompanied by increased levels of hepatic lipid droplets and oxidative stress. Analysis of fecal samples revealed that HFD-fed mice exhibited a reduction in fecal species richness, and that TCS further diminished microbial diversity and shifted the bacterial community toward lower Bacteriodetes and higher Firmicutes, resembling changes in microbiota composition in nonalcoholic steatohepatitis (NASH) patients. Using reverse-genetic approaches, we demonstrate that, along with HFD, TCS induces hepatic steatosis and steatohepatitis jointly regulated by the transcription factor ATF4 and the nuclear receptor PPARα, which participate in the transcriptional regulation of the Fgf21 gene. This study provides evidence linking nutritional imbalance and exposure to TCS with the progression of NASH.


Asunto(s)
Factores de Crecimiento de Fibroblastos/genética , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , PPAR alfa/genética , Triclosán/farmacología , Animales , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Ácidos Grasos/biosíntesis , Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hígado/efectos de los fármacos , Hígado/patología , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/etiología , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Ratones , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad/tratamiento farmacológico , Obesidad/etiología , Obesidad/genética , Obesidad/patología
6.
BMC Microbiol ; 22(1): 75, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35287577

RESUMEN

BACKGROUND: Depression and obesity are highly prevalent, often co-occurring conditions marked by inflammation. Microbiome perturbations are implicated in obesity-inflammation-depression interrelationships, but how the microbiome mechanistically contributes to pathology remains unclear. Metabolomic investigations into microbial neuroactive metabolites may offer mechanistic insights into host-microbe interactions. Using 16S sequencing and untargeted mass spectrometry of saliva, and blood monocyte inflammation regulation assays, we identified key microbes, metabolites and host inflammation in association with depressive symptomatology, obesity, and depressive symptomatology-obesity comorbidity. RESULTS: Gram-negative bacteria with inflammation potential were enriched relative to Gram-positive bacteria in comorbid obesity-depression, supporting the inflammation-oral microbiome link in obesity-depression interrelationships. Oral microbiome was more highly predictive of depressive symptomatology-obesity co-occurrences than of obesity or depressive symptomatology independently, suggesting specific microbial signatures associated with obesity-depression co-occurrences. Mass spectrometry analysis revealed significant changes in levels of signaling molecules of microbiota, microbial or dietary derived signaling peptides and aromatic amino acids among depressive symptomatology, obesity and comorbid obesity-depression. Furthermore, integration of the microbiome and metabolomics data revealed that key oral microbes, many previously shown to have neuroactive potential, co-occurred with potential neuropeptides and biosynthetic precursors of the neurotransmitters dopamine, epinephrine and serotonin. CONCLUSIONS: Together, our findings offer novel insights into oral microbial-brain connection and potential neuroactive metabolites involved.


Asunto(s)
Depresión , Dipéptidos , Bacterias/genética , Comorbilidad , Depresión/metabolismo , Humanos , Inflamación/metabolismo , Neurotransmisores , Obesidad/complicaciones , Obesidad/metabolismo
7.
Clin Gastroenterol Hepatol ; 17(2): 218-230, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30240894

RESUMEN

Advances in technical capabilities for reading complex human microbiomes are leading to an explosion of microbiome research, leading in turn to intense interest among clinicians in applying these techniques to their patients. In this review, we discuss the content of the human microbiome, including intersubject and intrasubject variability, considerations of study design including important confounding factors, and different methods in the laboratory and on the computer to read the microbiome and its resulting gene products and metabolites. We highlight several common pitfalls for clinicians, including the expectation that an individual's microbiome will be stable, that diet can induce rapid changes that are large compared with the differences among subjects, that everyone has essentially the same core stool microbiome, and that different laboratory and computational methods will yield essentially the same results. We also highlight the current limitations and future promise of these techniques, with the expectation that an understanding of these considerations will help accelerate the path toward routine clinical application of these techniques developed in research settings.


Asunto(s)
Biología Computacional/métodos , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Metabolómica/métodos , Metagenómica/métodos , Microbiota , Humanos , Individualidad
8.
Anal Chem ; 89(14): 7549-7559, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28628333

RESUMEN

Increasing appreciation of the gut microbiome's role in health motivates understanding the molecular composition of human feces. To analyze such complex samples, we developed a platform coupling targeted and untargeted metabolomics. The approach is facilitated through split flow from one UPLC, joint timing triggered by contact closure relays, and a script to retrieve the data. It is designed to detect specific metabolites of interest with high sensitivity, allows for correction of targeted information, enables better quantitation thus providing an advanced analytical tool for exploratory studies. Procrustes analysis revealed that untargeted approach provides a better correlation to microbiome data, associating specific metabolites with microbes that produce or process them. With the subset of over one hundred human fecal samples from the American Gut project, the implementation of the described coupled workflow revealed that targeted analysis using combination of single transition per compound with retention time misidentifies 30% of the targeted data and could lead to incorrect interpretations. At the same time, the targeted analysis extends detection limits and dynamic range, depending on the compounds, by orders of magnitude. A software application has been developed as a part of the workflow to allows for quantitative assessments based on calibration curves. Using this approach, we detect expected microbially modified molecules such as secondary bile acids and unexpected microbial molecules including Pseudomonas-associated quinolones and rhamnolipids in feces, setting the stage for metabolome-microbiome-wide association studies (MMWAS).


Asunto(s)
Heces/química , Metaboloma , Heces/microbiología , Humanos , Espectrometría de Masas , Estructura Molecular
9.
Sci Rep ; 14(1): 23858, 2024 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-39394230

RESUMEN

Recent research highlights the significant impact of the gut microbiota on health and disease. Thalassemia, a hereditary blood disorder, requires regular blood transfusions, leading to an accumulation of iron in the body. Such changes could potentially alter the intestinal microbiota, thereby increasing the susceptibility of thalassemic patients to infection. In this study, we analyzed the fecal microbiota of 70 non-transfusion-dependent (NTDT) ß-thalassemia/HbE patients and 30 healthy controls. Our findings indicate that iron chelation intervention had no detectable effect on the microbiome profile of thalassemic patients. However, the cross-sectional analysis revealed that the bacterial diversity and community structure in patients were significantly less diverse and distinct compared to those of healthy subjects. Using reference frames, we were also able to demonstrate that bacterial taxa that are known to produce short chain fatty acids, from the genera Alistipes, Coprococcus, and Oscillospira, and those from the family Ruminococcaceae, were less prevalent in the patients. In contrast, bacterial taxa associated with an unhealthy gut, including the genus Clostridium and those from the families Fusobacteriaceae, Enterobacteriaceae, and Peptostrptococcaceae, were more prevalent in patients and found to be correlated with higher levels of ferritin. Collectively, these changes in the microbiota could be regarded as markers of raised ferritin levels, and therefore, awareness should be exercised as they could interfere, albeit indirectly, with the treatment of the co-morbidities of thalassemia.


Asunto(s)
Microbioma Gastrointestinal , Sobrecarga de Hierro , Talasemia beta , Humanos , Talasemia beta/microbiología , Talasemia beta/sangre , Masculino , Femenino , Adulto , Sobrecarga de Hierro/microbiología , Estudios Transversales , Heces/microbiología , Estudios de Casos y Controles , Adulto Joven , Ferritinas/sangre , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Persona de Mediana Edad , Adolescente
10.
J Crohns Colitis ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836628

RESUMEN

BACKGROUND AND AIMS: The gut microbiota contributes to aberrant inflammation in inflammatory bowel disease, but the bacterial factors causing or exacerbating inflammation are not fully understood. Further, the predictive or prognostic value of gut microbial biomarkers for remission in response to biologic therapy is unclear. METHODS: We perform whole metagenomic sequencing of 550 stool samples from 287 ulcerative colitis patients from a large phase 3 head-to-head study of infliximab and etrolizumab. RESULTS: We identify several bacterial species in baseline and/or post-treatment samples that associate with clinical remission. These include previously described associations (Faecalibacterium prausnitzii_F) as well as new associations with remission to biologic therapy (Flavonifractor plautii). We build multivariate models and find that gut microbial species are better predictors for remission than clinical variables alone. Finally, we describe patient groups that differ in microbiome composition and remission rate after induction therapy, suggesting the potential utility of microbiome-based endotyping. CONCLUSIONS: In this large study of ulcerative colitis patients, we show that few individual species associate strongly with clinical remission, but multivariate models including microbiome can predict clinical remission and have better predictive power compared to clinical data alone.

11.
Cell Rep ; 42(8): 112997, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37611587

RESUMEN

Colorectal cancer (CRC) is driven by genomic alterations in concert with dietary influences, with the gut microbiome implicated as an effector in disease development and progression. While meta-analyses have provided mechanistic insight into patients with CRC, study heterogeneity has limited causal associations. Using multi-omics studies on genetically controlled cohorts of mice, we identify diet as the major driver of microbial and metabolomic differences, with reductions in α diversity and widespread changes in cecal metabolites seen in high-fat diet (HFD)-fed mice. In addition, non-classic amino acid conjugation of the bile acid cholic acid (AA-CA) increased with HFD. We show that AA-CAs impact intestinal stem cell growth and demonstrate that Ileibacterium valens and Ruminococcus gnavus are able to synthesize these AA-CAs. This multi-omics dataset implicates diet-induced shifts in the microbiome and the metabolome in disease progression and has potential utility in future diagnostic and therapeutic developments.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Microbiota , Animales , Ratones , Ácidos y Sales Biliares , Metaboloma
12.
Clin Transl Sci ; 15(11): 2576-2582, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36043481

RESUMEN

Human milk is the optimal infant nutrition. However, although human-derived metabolites (such as lipids and oligosaccharides) in human milk are regularly reported, the presence of exogenous chemicals (such as drugs, food, and synthetic compounds) are often not addressed. To understand the types of exogenous compounds that might be present, human milk (n = 996) was analyzed by untargeted metabolomics. This analysis revealed that lifestyle molecules, such as medications and their metabolites, and industrial sources, such as plasticizers, cosmetics, and other personal care products, are found in human milk. We provide further evidence that some of these lifestyle molecules are also detectable in the newborn's stool. Thus, this study gives important insight into the types of exposures infants receiving human milk might ingest due to the lifestyle choices, exposure, or medical status of the lactating parent.


Asunto(s)
Lactancia , Leche Humana , Lactante , Recién Nacido , Femenino , Humanos , Leche Humana/química , Metabolómica
13.
Nat Genet ; 54(2): 134-142, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35115689

RESUMEN

Human genetic variation affects the gut microbiota through a complex combination of environmental and host factors. Here we characterize genetic variations associated with microbial abundances in a single large-scale population-based cohort of 5,959 genotyped individuals with matched gut microbial metagenomes, and dietary and health records (prevalent and follow-up). We identified 567 independent SNP-taxon associations. Variants at the LCT locus associated with Bifidobacterium and other taxa, but they differed according to dairy intake. Furthermore, levels of Faecalicatena lactaris associated with ABO, and suggested preferential utilization of secreted blood antigens as energy source in the gut. Enterococcus faecalis levels associated with variants in the MED13L locus, which has been linked to colorectal cancer. Mendelian randomization analysis indicated a potential causal effect of Morganella on major depressive disorder, consistent with observational incident disease analysis. Overall, we identify and characterize the intricate nature of host-microbiota interactions and their association with disease.


Asunto(s)
Dieta , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Variación Genética , Interacciones Microbiota-Huesped , Polimorfismo de Nucleótido Simple , Sistema del Grupo Sanguíneo ABO/genética , Bifidobacterium/fisiología , Clostridiales/fisiología , Estudios de Cohortes , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/microbiología , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/microbiología , Fibras de la Dieta , Enterococcus faecalis/fisiología , Microbioma Gastrointestinal/genética , Estudio de Asociación del Genoma Completo , Humanos , Lactasa/genética , Complejo Mediador/genética , Análisis de la Aleatorización Mendeliana , Metagenoma , Morganella/fisiología
14.
Cell Metab ; 34(5): 719-730.e4, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35354069

RESUMEN

The gut microbiome has shown promise as a predictive biomarker for various diseases. However, the potential of gut microbiota for prospective risk prediction of liver disease has not been assessed. Here, we utilized shallow shotgun metagenomic sequencing of a large population-based cohort (N > 7,000) with ∼15 years of follow-up in combination with machine learning to investigate the predictive capacity of gut microbial predictors individually and in conjunction with conventional risk factors for incident liver disease. Separately, conventional and microbial factors showed comparable predictive capacity. However, microbiome augmentation of conventional risk factors using machine learning significantly improved the performance. Similarly, disease-free survival analysis showed significantly improved stratification using microbiome-augmented models. Investigation of predictive microbial signatures revealed previously unknown taxa for liver disease, as well as those previously associated with hepatic function and disease. This study supports the potential clinical validity of gut metagenomic sequencing to complement conventional risk factors for prediction of liver diseases.


Asunto(s)
Microbioma Gastrointestinal , Hepatopatías , Microbiota , Microbioma Gastrointestinal/genética , Humanos , Metagenómica , Estudios Prospectivos , Factores de Riesgo
15.
Nat Microbiol ; 7(12): 2128-2150, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36443458

RESUMEN

Despite advances in sequencing, lack of standardization makes comparisons across studies challenging and hampers insights into the structure and function of microbial communities across multiple habitats on a planetary scale. Here we present a multi-omics analysis of a diverse set of 880 microbial community samples collected for the Earth Microbiome Project. We include amplicon (16S, 18S, ITS) and shotgun metagenomic sequence data, and untargeted metabolomics data (liquid chromatography-tandem mass spectrometry and gas chromatography mass spectrometry). We used standardized protocols and analytical methods to characterize microbial communities, focusing on relationships and co-occurrences of microbially related metabolites and microbial taxa across environments, thus allowing us to explore diversity at extraordinary scale. In addition to a reference database for metagenomic and metabolomic data, we provide a framework for incorporating additional studies, enabling the expansion of existing knowledge in the form of an evolving community resource. We demonstrate the utility of this database by testing the hypothesis that every microbe and metabolite is everywhere but the environment selects. Our results show that metabolite diversity exhibits turnover and nestedness related to both microbial communities and the environment, whereas the relative abundances of microbially related metabolites vary and co-occur with specific microbial consortia in a habitat-specific manner. We additionally show the power of certain chemistry, in particular terpenoids, in distinguishing Earth's environments (for example, terrestrial plant surfaces and soils, freshwater and marine animal stool), as well as that of certain microbes including Conexibacter woesei (terrestrial soils), Haloquadratum walsbyi (marine deposits) and Pantoea dispersa (terrestrial plant detritus). This Resource provides insight into the taxa and metabolites within microbial communities from diverse habitats across Earth, informing both microbial and chemical ecology, and provides a foundation and methods for multi-omics microbiome studies of hosts and the environment.


Asunto(s)
Microbiota , Animales , Microbiota/genética , Metagenoma , Metagenómica , Planeta Tierra , Suelo
16.
Nat Biotechnol ; 40(12): 1774-1779, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35798960

RESUMEN

Human untargeted metabolomics studies annotate only ~10% of molecular features. We introduce reference-data-driven analysis to match metabolomics tandem mass spectrometry (MS/MS) data against metadata-annotated source data as a pseudo-MS/MS reference library. Applying this approach to food source data, we show that it increases MS/MS spectral usage 5.1-fold over conventional structural MS/MS library matches and allows empirical assessment of dietary patterns from untargeted data.


Asunto(s)
Metadatos , Espectrometría de Masas en Tándem , Humanos , Metabolómica/métodos
17.
mSystems ; : e0011621, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34184915

RESUMEN

Obstructive sleep apnea (OSA), characterized by intermittent hypoxia and hypercapnia (IHC), affects the composition of the gut microbiome and metabolome. The gut microbiome has diurnal oscillations that play a crucial role in regulating circadian and overall metabolic homeostasis. Thus, we hypothesized that IHC adversely alters the gut luminal dynamics of key microbial families and metabolites. The objective of this study was to determine the diurnal dynamics of the fecal microbiome and metabolome of Apoe-/- mice after a week of IHC exposure. Individually housed, 10-week-old Apoe-/- mice on an atherogenic diet were split into two groups. One group was exposed to daily IHC conditions for 10 h (Zeitgeber time 2 [ZT2] to ZT12), while the other was maintained in room air. Six days after the initiation of the IHC conditions, fecal samples were collected every 4 h for 24 h (6 time points). We performed 16S rRNA gene amplicon sequencing and untargeted liquid chromatography-mass spectrometry (LC-MS) to assess changes in the microbiome and metabolome. IHC induced global changes in the cyclical dynamics of the gut microbiome and metabolome. Ruminococcaceae, Lachnospiraceae, S24-7, and Verrucomicrobiaceae had the greatest shifts in their diurnal oscillations. In the metabolome, bile acids, glycerolipids (phosphocholines and phosphoethanolamines), and acylcarnitines were greatly affected. Multi-omic analysis of these results demonstrated that Ruminococcaceae and tauro-ß-muricholic acid (TßMCA) cooccur and are associated with IHC conditions and that Coriobacteriaceae and chenodeoxycholic acid (CDCA) cooccur and are associated with control conditions. IHC significantly change the diurnal dynamics of the fecal microbiome and metabolome, increasing members and metabolites that are proinflammatory and proatherogenic while decreasing protective ones. IMPORTANCE People with obstructive sleep apnea are at a higher risk of high blood pressure, type 2 diabetes, cardiac arrhythmias, stroke, and sudden cardiac death. We wanted to understand whether the gut microbiome changes induced by obstructive sleep apnea could potentially explain some of these medical problems. By collecting stool from a mouse model of this disease at multiple time points during the day, we studied how obstructive sleep apnea changed the day-night patterns of microbes and metabolites of the gut. Since the oscillations of the gut microbiome play a crucial role in regulating metabolism, changes in these oscillations can explain why these patients can develop so many metabolic problems. We found changes in microbial families and metabolites that regulate many metabolic pathways contributing to the increased risk for heart disease seen in patients with obstructive sleep apnea.

18.
Front Physiol ; 12: 663950, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897472

RESUMEN

Obstructive sleep apnea (OSA), a common sleep disorder characterized by intermittent hypoxia and hypercapnia (IHC), increases atherosclerosis risk. However, the contribution of intermittent hypoxia (IH) or intermittent hypercapnia (IC) in promoting atherosclerosis remains unclear. Since gut microbiota and metabolites have been implicated in atherosclerosis, we examined whether IH or IC alters the microbiome and metabolome to induce a pro-atherosclerotic state. Apolipoprotein E deficient mice (ApoE-/- ), treated with IH or IC on a high-fat diet (HFD) for 10 weeks, were compared to Air controls. Atherosclerotic lesions were examined, gut microbiome was profiled using 16S rRNA gene amplicon sequencing and metabolome was assessed by untargeted mass spectrometry. In the aorta, IC-induced atherosclerosis was significantly greater than IH and Air controls (aorta, IC 11.1 ± 0.7% vs. IH 7.6 ± 0.4%, p < 0.05 vs. Air 8.1 ± 0.8%, p < 0.05). In the pulmonary artery (PA), however, IH, IC, and Air were significantly different from each other in atherosclerotic formation with the largest lesion observed under IH (PA, IH 40.9 ± 2.0% vs. IC 20.1 ± 2.6% vs. Air 12.2 ± 1.5%, p < 0.05). The most differentially abundant microbial families (p < 0.001) were Peptostreptococcaceae, Ruminococcaceae, and Erysipelotrichaceae. The most differentially abundant metabolites (p < 0.001) were tauro-ß-muricholic acid, ursodeoxycholic acid, and lysophosphoethanolamine (18:0). We conclude that IH and IC (a) modulate atherosclerosis progression differently in distinct vascular beds with IC, unlike IH, facilitating atherosclerosis in both aorta and PA and (b) promote an atherosclerotic luminal gut environment that is more evident in IH than IC. We speculate that the resulting changes in the gut metabolome and microbiome interact differently with distinct vascular beds.

19.
Gut Microbes ; 13(1): 1-22, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33651661

RESUMEN

Fatty liver disease is the most common liver disease in the world. Its connection with the gut microbiome has been known for at least 80 y, but this association remains mostly unstudied in the general population because of underdiagnosis and small sample sizes. To address this knowledge gap, we studied the link between the Fatty Liver Index (FLI), a well-established proxy for fatty liver disease, and gut microbiome composition in a representative, ethnically homogeneous population sample of 6,269 Finnish participants. We based our models on biometric covariates and gut microbiome compositions from shallow metagenome sequencing. Our classification models could discriminate between individuals with a high FLI (≥60, indicates likely liver steatosis) and low FLI (<60) in internal cross-region validation, consisting of 30% of the data not used in model training, with an average AUC of 0.75 and AUPRC of 0.56 (baseline at 0.30). In addition to age and sex, our models included differences in 11 microbial groups from class Clostridia, mostly belonging to orders Lachnospirales and Oscillospirales. Our models were also predictive of the high FLI group in a different Finnish cohort, consisting of 258 participants, with an average AUC of 0.77 and AUPRC of 0.51 (baseline at 0.21). Pathway analysis of representative genomes of the positively FLI-associated taxa in (NCBI) Clostridium subclusters IV and XIVa indicated the presence of, e.g., ethanol fermentation pathways. These results support several findings from smaller case-control studies, such as the role of endogenous ethanol producers in the development of the fatty liver.


Asunto(s)
Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Hígado Graso/microbiología , Microbioma Gastrointestinal , Adulto , Factores de Edad , Bacterias/genética , Bacterias/metabolismo , Clostridium/clasificación , Clostridium/genética , Clostridium/crecimiento & desarrollo , Clostridium/metabolismo , Estudios de Cohortes , Etanol/metabolismo , Femenino , Fermentación , Genoma Bacteriano , Humanos , Masculino , Metagenoma , Persona de Mediana Edad , Filogenia , Factores Sexuales
20.
mSystems ; 6(4): e0060121, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34342533

RESUMEN

Many ant species grow fungus gardens that predigest food as an essential step of the ants' nutrient uptake. These symbiotic fungus gardens have long been studied and feature a gradient of increasing substrate degradation from top to bottom. To further facilitate the study of fungus gardens and enable the understanding of the predigestion process in more detail than currently known, we applied recent mass spectrometry-based approaches and generated a three-dimensional (3D) molecular map of an Atta texana fungus garden to reveal chemical modifications as plant substrates pass through it. The metabolomics approach presented in this study can be applied to study similar processes in natural environments to compare with lab-maintained ecosystems. IMPORTANCE The study of complex ecosystems requires an understanding of the chemical processes involving molecules from several sources. Some of the molecules present in fungus-growing ants' symbiotic system originate from plants. To facilitate the study of fungus gardens from a chemical perspective, we provide a molecular map of an Atta texana fungus garden to reveal chemical modifications as plant substrates pass through it. The metabolomics approach presented in this study can be applied to study similar processes in natural environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA