Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Hum Genet ; 109(10): 1828-1849, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36084634

RESUMEN

Orofaciodigital syndrome (OFD) is a genetically heterogeneous ciliopathy characterized by anomalies of the oral cavity, face, and digits. We describe individuals with OFD from three unrelated families having bi-allelic loss-of-function variants in SCNM1 as the cause of their condition. SCNM1 encodes a protein recently shown to be a component of the human minor spliceosome. However, so far the effect of loss of SCNM1 function on human cells had not been assessed. Using a comparative transcriptome analysis between fibroblasts derived from an OFD-affected individual harboring SCNM1 mutations and control fibroblasts, we identified a set of genes with defective minor intron (U12) processing in the fibroblasts of the affected subject. These results were reproduced in SCNM1 knockout hTERT RPE-1 (RPE-1) cells engineered by CRISPR-Cas9-mediated editing and in SCNM1 siRNA-treated RPE-1 cultures. Notably, expression of TMEM107 and FAM92A encoding primary cilia and basal body proteins, respectively, and that of DERL2, ZC3H8, and C17orf75, were severely reduced in SCNM1-deficient cells. Primary fibroblasts containing SCNM1 mutations, as well as SCNM1 knockout and SCNM1 knockdown RPE-1 cells, were also found with abnormally elongated cilia. Conversely, cilia length and expression of SCNM1-regulated genes were restored in SCNM1-deficient fibroblasts following reintroduction of SCNM1 via retroviral delivery. Additionally, functional analysis in SCNM1-retrotransduced fibroblasts showed that SCNM1 is a positive mediator of Hedgehog (Hh) signaling. Our findings demonstrate that defective U12 intron splicing can lead to a typical ciliopathy such as OFD and reveal that primary cilia length and Hh signaling are regulated by the minor spliceosome through SCNM1 activity.


Asunto(s)
Ciliopatías , Síndromes Orofaciodigitales , Cilios/genética , Cilios/metabolismo , Ciliopatías/genética , Proteínas Hedgehog/metabolismo , Humanos , Intrones/genética , Mutación/genética , Síndromes Orofaciodigitales/genética , Empalme del ARN/genética , Factores de Empalme de ARN/metabolismo , ARN Interferente Pequeño/metabolismo , Empalmosomas/genética , Empalmosomas/metabolismo
2.
Eur J Neurol ; 30(8): 2401-2410, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37183562

RESUMEN

BACKGROUND AND PURPOSE: Vitamin D is considered to play a role in multiple sclerosis (MS) etiopathogenesis. A polymorphism in the CYP24A1 gene, rs2762943, was recently identified that was associated with an increased MS risk. CYP24A1 encodes a protein involved in the catabolism of the active form of vitamin D. The immunological effects of carrying the rs2762943 risk allele were investigated, as well as its role as genetic modifier. METHODS: Serum levels of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D (1,25(OH)2 D) were measured in a cohort of 167 MS patients. In a subgroup of patients, expression levels of major histocompatibility complex class II and co-stimulatory molecules were determined by flow cytometry, and serum levels of pro-inflammatory (interferon gamma, granulocyte macrophage colony-stimulating factor, C-X-C motif chemokine ligand 13) and anti-inflammatory (interleukin 10) cytokines and neurofilament light chain were measured by single-molecule array assays. The effect of the rs2762943 polymorphism on disease activity and disability measures was evaluated in 340 MS patients. RESULTS: Compared to non-carriers, carriers of the rs2762943 risk allele were characterized by reduced levels of 1,25(OH)2 D (p = 0.0001) and elevated levels of interferon gamma (p = 0.03) and granulocyte macrophage colony-stimulating factor (p = 0.008), whereas no significant differences were observed for the other markers. The presence of the rs2762943 risk allele had no significant impact on disease activity and disability outcomes during follow-up. However, risk allele carriers were younger at disease onset (p = 0.04). CONCLUSIONS: These findings suggest that the CYP24A1 rs2762943 polymorphism plays a more important role in MS susceptibility than in disease prognosis and is associated with lower 1,25(OH)2 D levels and a heightened pro-inflammatory environment in MS patients.


Asunto(s)
Esclerosis Múltiple , Humanos , Vitamina D3 24-Hidroxilasa/genética , Vitamina D3 24-Hidroxilasa/metabolismo , Esclerosis Múltiple/genética , Interferón gamma , Factor Estimulante de Colonias de Macrófagos , Vitamina D , Vitaminas
3.
Ann Hematol ; 101(7): 1567-1576, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35525883

RESUMEN

Despite advances in the understanding of the pathophysiology of cytomegalovirus (CMV) infection, it remains as one of the most common infectious complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT). The aim of this study was to determine the genotype of cytokines and chemokines in donor and recipient and their association with CMV reactivation. Eighty-five patients receiving an allo-HSCT from an HLA-identical sibling donor were included in the study. Fifty genes were selected for their potential role in the pathogenesis of CMV infection. CMV DNAemia was evaluated until day 180 after allo-HSCT. CMV reactivation was observed in 51/85 (60%) patients. Of the 213 genetic variants selected, 11 polymorphisms in 7 different genes (CXCL12, IL12A, KIR3DL1, TGFB2, TNF, IL1RN, and CD48) were associated with development or protection from CMV reactivation. A predictive model using five of such polymorphisms (CXCL12 rs2839695, IL12A rs7615589, KIR3DL1 rs4554639, TGFB2 rs5781034 for the recipient and CD48 rs2295615 for the donor) together with the development of acute GVHD grade III/IV improved risk stratification of CMV reactivation. In conclusion, the data presented suggest that the screening of five polymorphisms in recipient and donor pre-transplantation could help to predict the individual risk of CMV infection development after HLA-identical allo-HSCT.


Asunto(s)
Infecciones por Citomegalovirus , Trasplante de Células Madre Hematopoyéticas , Citomegalovirus/genética , Infecciones por Citomegalovirus/etiología , Infecciones por Citomegalovirus/genética , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Inmunogenética , Estudios Retrospectivos , Trasplante Homólogo/efectos adversos
4.
Brain ; 143(5): 1414-1430, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32282893

RESUMEN

Primary progressive multiple sclerosis is a poorly understood disease entity with no specific prognostic biomarkers and scarce therapeutic options. We aimed to identify disease activity biomarkers in multiple sclerosis by performing an RNA sequencing approach in peripheral blood mononuclear cells from a discovery cohort of 44 untreated patients with multiple sclerosis belonging to different clinical forms and activity phases of the disease, and 12 healthy control subjects. A validation cohort of 58 patients with multiple sclerosis and 26 healthy control subjects was included in the study to replicate the RNA sequencing findings. The RNA sequencing revealed an interleukin 1 beta (IL1B) signature in patients with primary progressive multiple sclerosis. Subsequent immunophenotyping pointed to blood monocytes as responsible for the IL1B signature observed in this group of patients. Functional experiments at baseline measuring apoptosis-associated speck-like protein containing a CARD (ASC) speck formation showed that the NOD-leucine rich repeat and pyrin containing protein 3 (NLRP3) inflammasome was overactive in monocytes from patients with primary progressive multiple sclerosis, and canonical NLRP3 inflammasome activation with a combination of ATP plus lipopolysaccharide was associated with increased IL1B production in this group of patients. Primary progressive multiple sclerosis patients with high IL1B gene expression levels in peripheral blood mononuclear cells progressed significantly faster compared to patients with low IL1B levels based on the time to reach an EDSS of 6.0 and the Multiple Sclerosis Severity Score. In agreement with peripheral blood findings, both NLRP3 and IL1B expression in brain tissue from patients with primary progressive multiple sclerosis was mainly restricted to cells of myeloid lineage. Treatment of mice with a specific NLRP3 inflammasome inhibitor attenuated established experimental autoimmune encephalomyelitis disease severity and improved CNS histopathology. NLRP3 inflammasome-specific inhibition was also effective in reducing axonal damage in a model of lipopolysaccharide-neuroinflammation using organotypic cerebellar cultures. Altogether, these results point to a role of IL1B and the NLRP3 inflammasome as prognostic biomarker and potential therapeutic target, respectively, in patients with primary progressive multiple sclerosis.


Asunto(s)
Inflamasomas/inmunología , Interleucina-1beta/inmunología , Esclerosis Múltiple Crónica Progresiva/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Adulto , Animales , Biomarcadores/análisis , Encefalomielitis Autoinmune Experimental/inmunología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Pronóstico
5.
Int J Mol Sci ; 22(8)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918680

RESUMEN

Overfishing of sea cucumber Isostichopus badionotus from Yucatan has led to a major population decline. They are being captured as an alternative to traditional species despite a paucity of information about their health-promoting properties. The transcriptome of the body wall of wild and farmed I. badionotus has now been studied for the first time by an RNA-Seq approach. The functional profile of wild I. badionotus was comparable with data in the literature for other regularly captured species. In contrast, the metabolism of first generation farmed I. badionotus was impaired. This had multiple possible causes including a sub-optimal growth environment and impaired nutrient utilization. Several key metabolic pathways that are important in effective handling and accretion of nutrients and energy, or clearance of harmful cellular metabolites, were disrupted or dysregulated. For instance, collagen mRNAs were greatly reduced and deposition of collagen proteins impaired. Wild I. badionotus is, therefore, a suitable alternative to other widely used species but, at present, the potential of farmed I. badionotus is unclear. The environmental or nutritional factors responsible for their impaired function in culture remain unknown, but the present data gives useful pointers to the underlying problems associated with their aquaculture.


Asunto(s)
Animales Domésticos/genética , Animales Salvajes/genética , Perfilación de la Expresión Génica , Pepinos de Mar/genética , Transcriptoma , Animales , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Reproducibilidad de los Resultados
6.
Int J Mol Sci ; 21(24)2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33317170

RESUMEN

Carotid atherosclerotic plaque rupture can lead to cerebrovascular accident (CVA). By comparing RNA-Seq data from vascular smooth muscle cells (VSMC) extracted from carotid atheroma surgically excised from a group of asymptomatic and symptomatic subjects, we identified more than 700 genomic variants associated with symptomatology (p < 0.05). From these, twelve single nucleotide polymorphisms (SNPs) were selected for further validation. Comparing genotypes of a hospital-based cohort of asymptomatic with symptomatic patients, an exonic SNP in the BIRC6 (BRUCE/Apollon) gene, rs35286811, emerged as significantly associated with CVA symptomatology (p = 0.002; OR = 2.24). Moreover, BIRC6 mRNA levels were significantly higher in symptomatic than asymptomatic subjects upon measurement by qPCR in excised carotid atherosclerotic tissue (p < 0.0001), and significantly higher in carriers of the rs35286811 risk allele (p < 0.0001). rs35286811 is a proxy of a GWAS SNP reported to be associated with red cell distribution width (RDW); RDW was increased in symptomatic patients (p < 0.03), but was not influenced by the rs35286811 genotype in our cohort. BIRC6 is a negative regulator of both apoptosis and autophagy. This work introduces BIRC6 as a novel genetic risk factor for stroke, and identifies autophagy as a genetically regulated mechanism of carotid plaque vulnerability.


Asunto(s)
Arterias Carótidas/metabolismo , Proteínas Inhibidoras de la Apoptosis/genética , Placa Aterosclerótica/genética , Polimorfismo de Nucleótido Simple , Arterias Carótidas/patología , Humanos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología
7.
J Exp Bot ; 70(3): 885-895, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30428077

RESUMEN

The B-class of MADS-box transcription factors has been studied in many plant species, but remains functionally uncharacterized in Rosaceae. APETALA3 (AP3), a member of this class, controls petal and stamen identities in Arabidopsis. In this study, we identified two members of the AP3 lineage in cultivated strawberry, Fragaria × ananassa, namely FaAP3 and FaTM6. FaTM6, and not FaAP3, showed an expression pattern equivalent to that of AP3 in Arabidopsis. We used the CRISPR/Cas9 genome editing system for the first time in an octoploid species to characterize the function of TM6 in strawberry flower development. An analysis by high-throughput sequencing of the FaTM6 locus spanning the target sites showed highly efficient genome editing already present in the T0 generation. Phenotypic characterization of the mutant lines indicated that FaTM6 plays a key role in anther development in strawberry. Our results validate the use of the CRISPR/Cas9 system for gene functional analysis in F. × ananassa as an octoploid species, and offer new opportunities for engineering strawberry to improve traits of interest in breeding programs.


Asunto(s)
Flores/genética , Fragaria/genética , Proteínas de Dominio MADS/genética , Proteínas de Plantas/genética , Polen/genética , Secuencia de Bases , Sistemas CRISPR-Cas , Flores/crecimiento & desarrollo , Flores/metabolismo , Fragaria/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Dominio MADS/metabolismo , Mutagénesis , Filogenia , Proteínas de Plantas/metabolismo , Polen/crecimiento & desarrollo , Polen/metabolismo , Poliploidía , Alineación de Secuencia
8.
J Assist Reprod Genet ; 36(3): 371-381, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30604135

RESUMEN

PURPOSE: Fluorescence in situ hybridization (FISH) in spermatozoa provides an estimate of the frequency of chromosomal abnormalities, but there is not a clinical consensus on how to statistically analyze sperm FISH results. We therefore propose a statistical approach to establish sperm aneuploidy thresholds in a fertile population. METHODS: We have determined the distribution and variation of the frequency of nullisomy, disomy, and diploidy for a set of 13 chromosomes (1, 2, 9, 13, 15, 16, 17, 18, 19, 21, 22, X, and Y) in sperm nuclei from 14 fertile men by means of automatized FISH. The dispersion of data has been analyzed by the non-parametric Wilcoxon Rank Sum test. We have established the threshold values for each chromosome and aneuploidy type on the basis of the confidence interval values (99.9%). RESULTS: Nullisomy thresholds ranged from 0.49% for chromosome 19 to 3.09% for chromosome 22; disomy thresholds ranged from 0.30% for chromosome 21 to 1.47% for chromosome 15; diploidy thresholds ranged from 0.24% for the 9/19 chromosome set to 1.21% for the 13/21 chromosome set. CONCLUSIONS: Applying this approach with clinical purposes will enable us to categorize the patient as altered or normal regarding his sperm aneuploidy. Any result surpassing the cited threshold values indicates a 99.9% probability of being significantly different from fertile controls.


Asunto(s)
Núcleo Celular/genética , Aberraciones Cromosómicas , Infertilidad Masculina/genética , Espermatozoides/patología , Aneuploidia , Diploidia , Humanos , Hibridación Fluorescente in Situ , Infertilidad Masculina/diagnóstico , Infertilidad Masculina/patología , Masculino
9.
J Neuroinflammation ; 15(1): 265, 2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-30217166

RESUMEN

BACKGROUND: It remains unclear whether disease course in multiple sclerosis (MS) is influenced by genetic polymorphisms. Here, we aimed to identify genetic variants associated with benign and aggressive disease courses in MS patients. METHODS: MS patients were classified into benign and aggressive phenotypes according to clinical criteria. We performed exome sequencing in a discovery cohort, which included 20 MS patients, 10 with benign and 10 with aggressive disease course, and genotyping in 2 independent validation cohorts. The first validation cohort encompassed 194 MS patients, 107 with benign and 87 with aggressive phenotypes. The second validation cohort comprised 257 patients, of whom 224 patients had benign phenotypes and 33 aggressive disease courses. Brain immunohistochemistries were performed using disease course associated genes antibodies. RESULTS: By means of single-nucleotide polymorphism (SNP) detection and comparison of allele frequencies between patients with benign and aggressive phenotypes, a total of 16 SNPs were selected for validation from the exome sequencing data in the discovery cohort. Meta-analysis of genotyping results in two validation cohorts revealed two polymorphisms, rs28469012 and rs10894768, significantly associated with disease course. SNP rs28469012 is located in CPXM2 (carboxypeptidase X, M14 family, member 2) and was associated with aggressive disease course (uncorrected p value < 0.05). SNP rs10894768, which is positioned in IGSF9B (immunoglobulin superfamily member 9B) was associated with benign phenotype (uncorrected p value < 0.05). In addition, a trend for association with benign phenotype was observed for a third SNP, rs10423927, in NLRP9 (NLR family pyrin domain containing 9). Brain immunohistochemistries in chronic active lesions from MS patients revealed expression of IGSF9B in astrocytes and macrophages/microglial cells, and expression of CPXM2 and NLRP9 restricted to brain macrophages/microglia. CONCLUSIONS: Genetic variants located in CPXM2, IGSF9B, and NLRP9 have the potential to modulate disease course in MS patients and may be used as disease activity biomarkers to identify patients with divergent disease courses. Altogether, the reported results from this study support the influence of genetic factors in MS disease course and may help to better understand the complex molecular mechanisms underlying disease pathogenesis.


Asunto(s)
Secuenciación del Exoma/métodos , Predisposición Genética a la Enfermedad/genética , Esclerosis Múltiple/genética , Esclerosis Múltiple/fisiopatología , Polimorfismo de Nucleótido Simple/genética , Encéfalo/metabolismo , Carboxipeptidasas A/genética , Carboxipeptidasas A/metabolismo , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Frecuencia de los Genes , Genotipo , Humanos , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , Masculino , Esclerosis Múltiple/patología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , ARN Mensajero
10.
Ann Neurol ; 82(2): 186-195, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28681388

RESUMEN

OBJECTIVE: To identify biomarkers associated with the development of progressive multifocal leukoencephalopathy (PML) in multiple sclerosis (MS) patients treated with natalizumab (NTZ). METHODS: Relapsing-remitting MS patients who developed PML under NTZ therapy (pre-PML) and non-PML NTZ-treated patients (NTZ-ctr) were included in the study. Cryopreserved peripheral blood mononuclear cells and serum samples collected at baseline, at 1- and 2-year treated time points, and during PML were analyzed for gene expression by RNA sequencing and for serum protein levels by Luminex and enzyme-linked immunosorbent assays, respectively. RESULTS: Among top differentially expressed genes in the RNA sequencing between pre-PML and NTZ-ctr patients, pathway analysis revealed a high representation of genes belonging to the following categories: proangiogenic factors (MMP9, VEGFA), chemokines (CXCL1, CXCL5, IL8, CCL2), cytokines (IL1B, IFNG), and plasminogen- and coagulation-related molecules (SERPINB2, PLAU, PLAUR, TFPI, THBD). Serum protein levels for these candidates were measured in a 2-step manner in a screening cohort and a validation cohort of pre-PML and NTZ-ctr patients. Only matrix metalloproteinase 9 (MMP9) was validated; in pre-PML patients, MMP9 protein levels were significantly reduced at baseline compared with NTZ-ctr patients, and levels remained lower at later time points during NTZ treatment. INTERPRETATION: The results from this study suggest that the proangiogenic factor MMP9 may play a role as a biomarker associated with the development of PML in MS patients treated with NTZ. Ann Neurol 2017;82:186-195.


Asunto(s)
Leucoencefalopatía Multifocal Progresiva/inducido químicamente , Metaloproteinasa 9 de la Matriz/sangre , Esclerosis Múltiple Recurrente-Remitente/sangre , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Natalizumab/efectos adversos , Natalizumab/uso terapéutico , Biomarcadores/sangre , Proteínas Sanguíneas/biosíntesis , Expresión Génica/efectos de los fármacos , Humanos , Factores Inmunológicos/sangre , Leucoencefalopatía Multifocal Progresiva/sangre , Leucoencefalopatía Multifocal Progresiva/complicaciones , Metaloproteinasa 9 de la Matriz/biosíntesis , Esclerosis Múltiple Recurrente-Remitente/complicaciones , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Factor A de Crecimiento Endotelial Vascular/sangre
12.
Int J Cancer ; 140(7): 1551-1563, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-27997699

RESUMEN

In developed countries, endometrial carcinoma is the most common cancer that affects the female genital tract. Endometrial carcinoma is divided into two main histological types, type I or endometrioid and type II or non-endometrioid, each of which have characteristic, although not exclusive, molecular alterations and mutational profiles. Nevertheless, information about the implication and relevance of some of these genes in this disease is lacking. We sought here to identify new recurrently mutated genes in endometrioid cancers that play a role in tumourigenesis and that influence the clinical outcome. We focused on low-grade, non-ultramutated tumours as these tumours have a worse prognosis than the ultramutated POLE-positive endometrioid endometrial carcinomas (EECs). We performed exome-sequencing of 11 EECs with matched normal tissue and subsequently validated 15 candidate genes in 76 samples. For the first time, we show that mutations in chromatin remodelling-related genes (KMT2D, KMT2C, SETD1B and BCOR) and in DNA-repair-related genes (BRCA1, BRCA2, RAD50 and CHD4) are frequent in this subtype of endometrial cancer. The alterations to these genes occurred with frequencies ranging from 35.5% for KMT2D to 10.5% for BRCA1 and BCOR, with some showing a tendency toward co-occurrence (RAD50-KMT2D and RAD50-SETD1B). All these genes harboured specific mutational hotspots. In addition, the mutational status of KMT2C, KMT2D and SETD1B helps to predict the degree of myometrial invasion, a critical prognostic feature. These results highlight the possible implication of these genes in this disease, creating opportunities for new therapeutic approaches.


Asunto(s)
Carcinoma Endometrioide/patología , Ensamble y Desensamble de Cromatina , Cromatina/química , Reparación del ADN , Neoplasias Endometriales/patología , Mutación , Carcinoma Endometrioide/genética , Línea Celular Tumoral , Biología Computacional , Análisis Mutacional de ADN , Neoplasias Endometriales/genética , Exoma , Femenino , Predisposición Genética a la Enfermedad , Humanos , Inmunohistoquímica , Inestabilidad de Microsatélites , Mutación Missense , Miometrio/metabolismo , Miometrio/patología , Pronóstico
13.
Tumour Biol ; 39(9): 1010428317724517, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28936923

RESUMEN

Colorectal cancer is a multistep process affecting several signaling pathways including EGFR (epidermal growth factor receptor), a therapeutic target for metastatic disease. Our aim was to characterize the mutational and expression profiles of the EGFR pathway in colorectal tumors and to integrate these results according to five previously defined groups. We screened seven genes for mutations ( KRAS-BRAF-PIK3CA-PIK3R1-AKT1-MAP2K1-PTEN) and six proteins (EGFR-p110α-p85α-PTEN-phosphoAKT-phosphoMEK1) by immunohistochemistry, PTEN deletion, and MSI. At least one mutated gene was observed in 68% of tumors ( KRAS 45%, PIK3CA 21%, BRAF 14%, and PTEN 7%). PTEN deletion was observed in 10.7% of tumors and 19.6% were MSI-High. In all, 54% of tumors showed a high EGFR expression, 48% p110α, 4.4% phosphoAKT, and 22% phosphoMEK1; and 43% showed low PTEN expression and 22% p85α. In total, five groups of tumors were defined based on MSI, BRAF, and KRAS mutations. Three groups gather mainly early-stage tumors, whereas a fourth group is mostly conformed by advanced tumors. We described here that 71.4% of tumors from one group have a mutated PI3K/PTEN pathway, in comparison to other groups having 32%, 27%, and 25%. In addition, the five groups are differentiated by molecular features such as EGFR, p85α, p110α, and PTEN, showing variable expression among tumor groups. In conclusion, alterations on the EGFR pathway were found in a high percentage of colorectal cancer patients. Using the integration of diverse molecular markers, we ratified previous classification in an ethnic group having relevant genetic differences and living in a different environmental background, adding complementary molecular targets related to therapy.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Receptores ErbB/genética , Adulto , Anciano , Anciano de 80 o más Años , Chile , Análisis Mutacional de ADN , Femenino , Genes erbB-1 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Transducción de Señal/genética , Análisis de Matrices Tisulares , Transcriptoma
15.
BMC Cancer ; 15: 940, 2015 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-26620706

RESUMEN

BACKGROUND: High grade serous ovarian cancer is characterised by high initial response to chemotherapy but poor outcome in the long term due to acquired resistance. One of the main genetic features of this disease is TP53 mutation. The majority of TP53 mutated tumors harbor missense mutations in this gene, correlated with p53 accumulation. TP53 null tumors constitute a specific subgroup characterised by nonsense, frameshift or splice-site mutations associated to complete absence of p53 expression. Different studies show that this kind of tumors may have a worse prognosis than other TP53 mutated HGSC. METHODS: In this study, we sought to characterise the intra-tumor heterogeneity of a TP53 null HGSC consisting of six primary tumor samples, two intra-pelvic and four extra-pelvic recurrences using exome sequencing and comparative genome hybridisation. RESULTS: Significant heterogeneity was found among the different tumor samples, both at the mutational and copy number levels. Exome sequencing identified 102 variants, of which only 42 were common to all three samples; whereas 7 of the 18 copy number changes found by CGH analysis were presented in all samples. Sanger validation of 20 variants found by exome sequencing in additional regions of the primary tumor and the recurrence allowed us to establish a sequence of the tumor clonal evolution, identifying those populations that most likely gave rise to recurrences and genes potentially involved in this process, like GPNMB and TFDP1. Using functional annotation and network analysis, we identified those biological functions most significantly altered in this tumor. Remarkably, unexpected functions such as microtubule-based movement and lipid metabolism emerged as important for tumor development and progression, suggesting its potential interest as therapeutic targets. CONCLUSIONS: Altogether, our results shed light on the clonal evolution of the distinct tumor regions identifying the most aggressive subpopulations and at least some of the genes that may be implicated in its progression and recurrence, and highlights the importance of considering intra-tumor heterogeneity when carrying out genetic and genomic studies, especially when these are aimed to diagnostic procedures or to uncover possible therapeutic strategies.


Asunto(s)
Cistadenocarcinoma Seroso/patología , Heterogeneidad Genética , Neoplasias Ováricas/patología , Proteína p53 Supresora de Tumor/genética , Evolución Clonal , Hibridación Genómica Comparativa , Cistadenocarcinoma Seroso/genética , Femenino , Variación Genética , Humanos , Glicoproteínas de Membrana/genética , Persona de Mediana Edad , Mutación , Clasificación del Tumor , Neoplasias Ováricas/genética , Pronóstico , Análisis de Secuencia de ADN , Factor de Transcripción DP1/genética
16.
Lab Invest ; 94(6): 645-53, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24709777

RESUMEN

Changes in cardiomyocyte cytoskeletal components, a crucial scaffold of cellular structure, have been found in heart failure (HF); however, the altered cytoskeletal network remains to be elucidated. This study investigated a new map of cytoskeleton-linked alterations that further explain the cardiomyocyte morphology and contraction disruption in HF. RNA-Sequencing (RNA-Seq) analysis was performed in 29 human LV tissue samples from ischemic cardiomyopathy (ICM; n=13) and dilated cardiomyopathy (DCM, n=10) patients undergoing cardiac transplantation and six healthy donors (control, CNT) and up to 16 ICM, 13 DCM and 7 CNT tissue samples for qRT-PCR. Gene Ontology analysis of RNA-Seq data demonstrated that cytoskeletal processes are altered in HF. We identified 60 differentially expressed cytoskeleton-related genes in ICM and 58 genes in DCM comparing with CNT, hierarchical clustering determined that shared cytoskeletal genes have a similar behavior in both pathologies. We further investigated MYLK4, RHOU, and ANKRD1 cytoskeletal components. qRT-PCR analysis revealed that MYLK4 was downregulated (-2.2-fold; P<0.05) and ANKRD1 was upregulated (2.3-fold; P<0.01) in ICM patients vs CNT. RHOU mRNA levels showed a statistical trend to decrease (-2.9-fold). In DCM vs CNT, MYLK4 (-4.0-fold; P<0.05) and RHOU (-3.9-fold; P<0.05) were downregulated and ANKRD1 (2.5-fold; P<0.05) was upregulated. Accordingly, MYLK4 and ANKRD1 protein levels were decreased and increased, respectively, in both diseases. Furthermore, ANKRD1 and RHOU mRNA levels were related with LV function (P<0.05). In summary, we have found a new map of changes in the ICM and DCM cardiomyocyte cytoskeleton. ANKRD1 and RHOU mRNA levels were related with LV function which emphasizes their relevance in HF. These new cytoskeletal changes may be responsible for altered contraction and cell architecture disruption in HF patients. Moreover, these results improve our knowledge on the role of cytoskeleton in functional and structural alterations in HF.


Asunto(s)
Citoesqueleto/metabolismo , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/metabolismo , ARN Mensajero/análisis , Estudios de Casos y Controles , Análisis por Conglomerados , Regulación hacia Abajo , Femenino , Perfilación de la Expresión Génica , Ventrículos Cardíacos/química , Ventrículos Cardíacos/metabolismo , Humanos , Masculino , Persona de Mediana Edad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN , Regulación hacia Arriba
17.
Reprod Biomed Online ; 28(4): 492-502, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24581602

RESUMEN

Genetic and biochemical sperm integrity is essential to ensure the reproductive competence. However, spermatogenesis involves physiological changes that could endanger sperm integrity. DNA protamination and apoptosis have been studied extensively. Furthermore, elevated rates of aneuploidy and DNA injury correlate with reproductive failures. Consequently, this study applied the conventional spermiogram method in combination with molecular tests to assess genetic integrity in ejaculate from normozoospermic patients with implantation failure by retrospectively analysing aneuploidy (chromosomes 18, X, Y), DNA fragmentation, externalization of phosphatidylserine and mitochondrial membrane potential status before and after magnetic activated cell sorting (MACS). Aneuploid, apoptotic and DNA-injured spermatozoa decreased significantly after MACS. A positive correlation was detected between reduction of aneuploidy and decreased DNA damage, but no correlation was determined with apoptotic markers. The interactions between apoptotic markers, DNA integrity and aneuploidy, and the effect of MACS on these parameters, remain unknown. In conclusion, use of MACS reduced aneuploidy, DNA fragmentation and apoptosis. A postulated mechanism relating aneuploidy and DNA injury is discussed; on the contrary, cell death markers could not be related. An 'apoptotic-like' route could explain this situation.


Asunto(s)
Aneuploidia , Apoptosis , Fragmentación del ADN , Espermatozoides/patología , Adulto , Separación Celular/métodos , Centrifugación por Gradiente de Densidad , Cromosomas Humanos Par 18/genética , Cromosomas Humanos X/genética , Cromosomas Humanos Y/genética , Diploidia , Humanos , Hibridación Fluorescente in Situ , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Espermatozoides/metabolismo
18.
Transplantation ; 107(2): 466-474, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35939381

RESUMEN

BACKGROUND: Given the central role of sarcomeric dysfunction in cardiomyocyte biology and sarcomere alterations described in endomyocardial biopsies of transplant patients with rejection, we hypothesized that the serum expression levels of genes encoding sarcomeric proteins were altered in acute cellular rejection (ACR). The aim of this study is to identify altered sarcomere-related molecules in serum and to evaluate their diagnostic accuracy for detecting rejection episodes. METHODS: Serum samples from transplant recipients undergoing routine endomyocardial biopsies were included in an RNA sequencing analysis (n = 40). Protein concentrations of alpha-cardiac actin were determined using a specific enzyme-linked immunoassay (n = 80). RESULTS: We identified 17 sarcomeric genes differentially expressed in patients with clinically relevant rejection (grade ≥2R ACR). A receiver operating characteristic curve was done to assess their accuracy for ACR detection and found that 6 relevant actins, myosins, and other sarcomere-related genes showed great diagnostic capacity with an area under the curve (AUC) > 0.800. Specifically, the gene encoding alpha-cardiac actin ( ACTC1 ) showed the best results (AUC = 1.000, P < 0.0001). We determine ACTC1 protein levels in a larger patient cohort, corroborating its overexpression and obtaining a significant diagnostic capacity for clinically relevant rejection (AUC = 0.702, P < 0.05). CONCLUSIONS: Sarcomeric alterations are reflected in peripheral blood of patients with allograft rejection. Because of their precision to detect ACR, we propose sarcomere ACTC1 serum expression levels as potential candidate for to be included in the development of molecular panel testing for noninvasive ACR detection.


Asunto(s)
Trasplante de Corazón , Trasplantes , Humanos , Actinas/genética , Trasplante de Corazón/efectos adversos , Rechazo de Injerto/diagnóstico , Rechazo de Injerto/genética , Rechazo de Injerto/patología , Trasplante Homólogo
19.
Transplantation ; 107(9): 2064-2072, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37606906

RESUMEN

BACKGROUND: There is a dire need for specific, noninvasive biomarkers that can accurately detect cardiac acute cellular rejection (ACR) early. Previously, we described miR-144-3p as an excellent candidate for detecting grade ≥2R ACR. Now, we investigated the combination of miR-144-3p with miR-652-3p, other differentially expressed serum miRNA we previously described, to improve diagnostic accuracy mainly in mild rejection to avoid reaching severe stages. METHODS: We selected miR-652-3p from a preliminary RNA-seq study to be validated by reverse transcription-quantitative polymerase chain reaction on 212 consecutive serum samples from transplantation recipients undergoing routine endomyocardial biopsies to subsequently combine them with miR-144-3p results and investigate their diagnostic capability. RESULTS: We confirmed the miR-652-3p overexpression (P < 0.0001) and its capability to discriminate between patients with and without ACR of any grade (P < 0.0001). The combined serum levels of miR-144-3p and miR-652-3p were significantly higher in patients with rejection regardless of posttransplantation time (P < 0.0001). This combination resulted in a diagnostic efficacy for 1R (area under the curve = 0.794) and ≥2R (area under the curve = 0.892; P < 0.0001) that was superior to each biomarker alone. Furthermore, it was a strong independent predictor of ACR for 1R (odds ratio of 10.950; P < 0.0001) and ≥2R (odds ratio of 14.289; P < 0.01). CONCLUSIONS: We demonstrated that an appropriate combination of blood-based biomarkers could exhibit greater efficiency for cardiac rejection diagnosis. The combined detection of abnormal expression of miR-144-3p and miR-652-3p in the serum of ACR patients can improve the diagnostic sensitivity of rejection at an early stage and contribute to increasing the diagnostic accuracy, mainly in the lower rejection grades.


Asunto(s)
Trasplante de Corazón , MicroARNs , Humanos , Trasplante de Corazón/efectos adversos , Corazón , MicroARNs/genética , Diagnóstico Precoz , Biomarcadores
20.
Antioxidants (Basel) ; 12(7)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37507877

RESUMEN

Ischemic cardiomyopathy (ICM) is associated with abnormal microRNA expression levels that involve an altered gene expression profile. However, little is known about the underlying causes of microRNA disruption in ICM and whether microRNA maturation is compromised. Therefore, we focused on microRNA maturation defects analysis and the implication of the microRNA biogenesis pathway and redox-sensitive microRNAs (redoximiRs). Transcriptomic changes were investigated via ncRNA-seq (ICM, n = 22; controls, n = 8) and mRNA-seq (ICM, n = 13; control, n = 10). The effect of hypoxia on the biogenesis of microRNAs was evaluated in the AC16 cell line. ICM patients showed a reduction in microRNA maturation compared to control (4.30 ± 0.94 au vs. 5.34 ± 1.07 au, p ˂ 0.05), accompanied by a deregulation of the microRNA biogenesis pathway: a decrease in pre-microRNA export (XPO5, FC = -1.38, p ˂ 0.05) and cytoplasmic processing (DICER, FC = -1.32, p ˂ 0.01). Both processes were regulated by hypoxia in AC16 cells (XPO5, FC = -1.65; DICER1, FC = -1.55; p ˂ 0.01; Exportin-5, FC = -1.81; Dicer, FC = -1.15; p ˂ 0.05). Patients displayed deregulation of several redoximiRs, highlighting miR-122-5p (FC = -2.41, p ˂ 0.001), which maintained a good correlation with the ejection fraction (r = 0.681, p ˂ 0.01). We evidenced a decrease in microRNA maturation mainly linked to a decrease in XPO5-mediated pre-microRNA export and DICER1-mediated processing, together with a general effect of hypoxia through deregulation of biogenesis pathway and the redoximiRs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA